
Ethical Implications of AI Bias as a Result of
Workforce Gender Imbalance

CIS & The Policy Lab, The University of Melbourne
Final Report for UniBank (Teachers Mutual Bank Limited)

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 2

Preamble

The authors have also provided a
Python Jupyter Notebook1 (titled UniB
ank Project Source Code) which
contains the Python source code,
technical documentation,
experimental methodology (including
internal tests and calculations), and
results. This notebook is provided in
the native computer-readable IPYNB
format – with a print-friendly PDF
version also included in the Appendix.
The current report contains cross-
references to
relevant Jupyter Notebook sections as
relevant.

To contextualise the findings provided
within, this report should be read in
conjunction with the Literature Review
deliverable dated 26th June 2020
(attached within the Appendix for
convenience). The terms resumé and
CV will be used interchangeably
throughout the report.

1 The programming language of choice is Python, due to its
widespread use in data science and machine learning
applications, as well as its extensive library of specialist functions
(e.g. numpy for mathematical operations). It is provided in
the Jupyter Notebook file format, which integrates both code and
technical documentation. For a brief introduction on
the Jupyter Notebook file format, please refer
to https://en.wikipedia.org/wiki/Project_Jupyter.

Marc Cheong
School of Computing and

Information Systems

Reeva Lederman
School of Computing and

Information Systems

Aidan McLoughney
School of Computing and

Information Systems

Sheilla Njoto
The Policy Lab

Leah Ruppanner
The Policy Lab

Anthony Wirth
School of Computing and

Information Systems

3

Authors

Preamble

Authors

Contents

Executive Summary

Gender Roles, Gendered Judgements

Designing research: gender biases in
panellists’ recruitment

Quantifying gender bias in panellists’
recruitment decisions

Patterns of heuristic judgements

Algorithms: eradicating or exacerbating
gender bias?

Lessons from the Amazon Case

Data Science Approach: Machine Learning

Design Decisions

Experimental Design and Key Tasks

Experimental Results

Can the computer match human
decision-making?

Machine Bias Could Influence Algorithmic
Outcomes in Three Meaningful Ways

Human Bias Could Influence Algorithms in
Two Meaningful Ways

Discussion and Future Work

Recommendations and Conclusion

Bibliography

Appendices

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 4

Contents
2

3

4

5

7

8

9

10

11

12

14

14

15

17

17

19

24

29

31

33

35

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 5

Executive Summary
This report summarises the key
findings from the Exploring the Ethical
Implications of AI Bias as a Result of
Workforce Gender
Imbalance project by University of
Melbourne researchers (from the Policy
Lab and the School of Computing and
Information Systems (CIS)/Centre for AI
and Digital Ethics (CAIDE). This
interdisciplinary project draws
upon sociological research and human
panel experiments from Policy Lab,
and industry-standard data science
approaches for machine learning and
algorithmic development and
evaluation from CIS/CAIDE.

This report will first discuss background
research in gender bias with respect to
hiring; in order to contextualise results
of the hiring decisions (and rationales) by
the Policy Lab panel when given
resumés characteristic of three
different industries, controlling for
applicants’ names (as markers of gender).

Next, the report focuses on design
decisions and justifications for the
proposed machine learning
algorithms (including transparency,
participatory design, and use of open-
source software); before describing
the prototype machine learning algorithms
to automate (and replicate) human
judgements; as well as a critical
investigation of their outputs. We use the
term ‘classifier’ for an algorithm which
attempts to classify a data point (in our
case, e.g. ‘hired’ versus ‘not hired’). The
term ‘predictor’ or ‘estimator’ is used for
an algorithm to, as its name implies,
predict an unknown value (in our case, e.g.
candidate is ranked ‘2nd’ or ‘5th’). Hence,
throughout the report, the terminology
used reflects the context in which the
algorithm in question is discussed2.

The report finds that both human bias and
machine bias can influence hiring
outcomes, by illustrating three hypotheses
on how algorithms affect hiring decisions
and entrench stereotypes, and two
hypotheses on how human factors play
a role as well. Recommendations to reduce
bias include training programs for human
resource professionals; audits of hiring and
gender discrimination across all positions;
creating established quota systems for
hiring; and creating proprietary hiring
algorithms that are transparent and trained
with the express aim of reducing gender
bias (with regular audits).

2 Further reading: Han,, Pei & Kamber 2011.

6

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 7

Gendered Roles, Gendered Judgements

Throughout history, women’s position in
society has been relegated5 to the role of
homemaker. Although this gender-role norm
has somewhat weakened today, its
impact on lingering prejudice6 still elicits
subconscious gender bias in the modern-day
recruitment arena. As women are
often still associated with domestic
work, they are presumed to be less
productive in the workplace than
men. Despite identical qualifications and
skills, employers often favour male
candidates as they describe them as
‘competitive’, ‘experienced’ and ‘ambitious’
in comparison to women who are
considered.7 It remains unclear, however,
how these gender associations have been
generated and why these specific traits
became part of the recruitment success
metrics.

These descriptions are not limited
to employers. In fact, men and women often
describe themselves with these
gendered adjectives8. Women often use
more communal, social and expressive
vocabularies in comparison to men who use
language that is more managerial and
directive. Moreover, these gender
differences
are apparent in how society describes itself.
Descriptions about men contain words that
highlight ‘prominence’, such as ‘outstanding’
or ‘unique’, whilst women are often
described more with ‘social’ connotations,
such as ‘warm’ and ‘collaborative’9.

3 Sczesny et al. 2016
4 Cohen 1976; Russo 1976

5 Bailey LaFrance,and Dividio 2018
6 Burgess 2013

7 Cohen 1976
8 Gaucher et al. 2011

9 Sczesny et al. 2016

Gender bias occurs when specific traits tied
to broader expectations of gender are
applied to individuals regardless of
whether an individual exhibits these
traits3. Gender bias often extends into job
recruitment when hiring panels rely on
existing heuristics to rank men and women
as qualified for positions4.

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 8

Gender-manipulated

Resumés:
Designed for three specific industries

Panellists:
Graduate students with experience

in hiring

Each panellist assess three sets of
resumés

Male-dominated:
Data Analyst

Female Male

Gender-balanced:
Finance Officer

Female Male

Female-dominated:
Recruitment Officer

Female Male

Designing research: gender biases in
panelists' recruitment

For each occupational role, we provide
hiring panellists with a set
of real resumés, with a balanced ratio
between male and female candidates. Half
of the panellists were given the original
resumés, without the gender of the
candidate manipulated. The other half
were given the exact same resumés, but
with the gender changed (male to female
and female to male – indicated by names
as gender variable; for
instance, ‘Mark’ to ‘Sarah’, or ‘Rachel’ to
‘John’). The hiring panellists within each
group were then instructed to rank each
resumé individually: with a lower
value denoting a better rank (i.e., their
favoured candidate has rank 1). They were
asked to provide their ranked lists to the
researchers prior to the group meeting.
Then, the panellists deliberated in groups
of three to collectively decide on the Top 3
and Bottom 3 resumés for each
occupational role. Finally, we used these
discussions and rankings to create a hiring
algorithm to create a consensus ranking of
candidates for the position.

Our research first investigates how
gender bias is incorporated into
employment recruitment. We observe
hiring behaviours for three specific
occupational roles, selected for
their gender ratios, to include: male-
dominated, gender-balanced and female-
dominated industries. The three
occupational roles are Data Analyst,
Finance Officer and Recruitment
Officer respectively (Figure 1).

Figure 1. Experimental setup for human panellists in assessing resumés

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 9

Quantifying gender bias in panelists'
recruitment decisions

The findings in Figure 2 demonstrate
that panellists of both genders ranked
female resumés lower than male
resumés in both male-dominated (Data
Analyst) and gender-balanced (Finance
Officer) roles, on average.

On the other hand, female resumés are
favoured more in the female-
dominated (Recruitment Officer) role,
being almost half a rank better than male
resumés on average.

Figure 2a. Average rankings of individual panellists

Figure 2b. Average rankings of (a) female panellists and (b) male panellists

Finance Officer Recruitment Officer

3.69

5.26

3.68

5.33

4.68
4.22

Individual Ranking Average
Note: the lower the value, the higher the ranking for 40 panellists

Data Analyst

Male Female

3.62

5.37

3.63

5.40

4.41
4.38

Data Analyst Finance Officer Recruitment Officer

Male Female

Average Ranking by Female Panellists
Note: the lower the value, the higher the ranking for 40 panellists

3.77

5.15

3.74

5.25

4.95

4.03

Data Analyst Finance Officer Recruitment Officer

Average Ranking by Male Panellists
Note: the lower the value, the higher the ranking for 40 panellists

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 10

As shown in Figure 3, our male candidates were more often ranked in the Top 3 for all jobs listed. By contrast, our female
candidates were more often ranked in the Bottom 3. The figures also demonstrate that the gender bias occurs the most
in the Bottom 3 candidates for the Finance Officer role, with male resumés half as likely to be ranked at the bottom
(9 male vs. 18 female resumés). As a close second, the Top 3 ranked resumés for Finance Officer
also illustrate a possible gender bias, with more male resumés ranking in the top 3 resumés than female
(15 male vs. 11 female).

0

2

4

6

8

10

12

14

16

Data Analyst Finance
Officer

Recruitment
Officer

Top 3 Group Ranking

Male Female

0

2

4

6

8

10

12

14

16

18

20

Data Analyst Finance
Officer

Recruitment
Officer

Bottom 3 Group Ranking

Male Female

Figure 3. Count of topmost (ranks 1, 2 and 3) and bottommost (ranks 6, 7 and 8)
rankings for resumés by gender, per industry type

Patterns of heuristic judgements
Our study uncovered several themes during deliberation. We identified subjective assessments from the panellists that
may increase the risk of introducing gender biases in hiring decisions. These findings are coherent with extant research on decision-
making heuristic biases10.

1 2
During each deliberation, panellists
express their first impression towards the
candidates’ ‘self-presentation’. This first
impression emerged from the structure of
the resumé, layout and word choices in
self-description. Most panellists believe
that these components signify a
candidate’s passion, likeability and resilien
ce. These assumptive associations are
often referred to as a first impression bias,
in which one’s judgement is influenced by
societal and cultural connotations and
personal encounters.11

Panellists assess the resumés against the
given job descriptions, including
qualifications, skills and educational
backgrounds; however, most panellists
describe the term
‘experienced’ subjectively, by comparing
against their own background. Studies
have identified this pattern as
an affinity bias, which has the potential
to exclude women and other minority
groups when underrepresented on hiring
panels.12 This includes the panellists’
varying judgements over what ‘job churn’
means.

Whilst some favour this component as
they believe it
indicates versatility and agility based
on their experience, others perceive
this component as undesirable as it
may indicate an undervaluing of
growth and persistence. Given
that females often have gaps in
employment for childrearing, these
differences in opinions may introduce
gender bias.

First impression as a ruling lens Personal experience as a benchmark of quality

10 Lim, Benbasat & Ward 2000; Lindsay & Norman 2013;
Rivera 2012

11 Judge & Cable 2004; Rivera 2012
12 Lewicki et al. 2016

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 11

Algorithms:
Eradicating or exacerbating gender bias?

These discussions and group
rankings guided us to develop a suite of
automated and semi-
automated algorithms to rate the candida
tes’ suitability for each of these jobs. The
idea of adopting hiring algorithms was
initially grounded on the premises that,
firstly, the absence of human
intervention gives rise
to purported impartiality and neutrality.
Secondly, technology
enables optimal efficiency and accuracy
in sorting a massive volume of
applications with minimum cost and for
maximum benefit of the company13.

Bias in
datasets

Bias in
the system

Bias in
human decisions

Gender bias in hiring algorithms can occur in three forms:

The limitation of the datasets is a
major factor in the algorithms’
proneness to discrimination as it
builds the scope of
benchmarking a candidate
against others.15 If the algorithms
are fed with limited datasets to
assess and rank candidates, the
algorithms will transform their
benchmark based on
this specific set of data.
Without proportional representati
on of gender and other protected
attributes, datasets can introduce
bias to algorithmic
judgements. Simply, if the data
lacks enough female candidates,
the algorithm will make hiring
decisions based largely on male
attributes.

Correlational bias remains a major concern in
algorithms, including those designed for hiring
management16. One of the most prominent
reasons for this is the use of proxy attributes to
represent a parameter or an individual. For
instance, algorithms make correlations between
‘creativity’ and the individual’s length of
employment within the same job17. They also
make associations between higher levels of
‘inquisitiveness’ and their likelihood of
finding other opportunities. When these
correlations are made based on demographic
traits, such as neighbourhood, race or gender,
the algorithms are at risk for bias
that can influence the whole corporate
culture18. Therefore, when these proxies are
embedded within the algorithms’ judgement of
suitability for employment, it will repeat the
same societal bias. For women, this may lead to
discrimination based on schooling, certain types
of extracurricular activities, employment gaps for
parental leave, and/or other correlated gendered
characteristics. Another example will be the
models used in natural language processing:
these models, trained on large corpora of
language data (from real-world news sites to
webpages) will pick up any biased
language usage, however subtle. As
a result, these biases, in one form or another, will
manifest themselves statistically in the language
model19.

Algorithms are generally trained
to record and memorise past
decisions and learn from
them20. This implies that the
algorithms memorise the patterns
of previous decisions
and can replicate the patterns of
these decisions. Without concrete
mitigation plans, algorithms adopt
human decision patterns and
replicate them as a predictor of
success metrics. Here,
humans may rely on internalized
gender bias to make hiring
decisions or hiring panels may fail
to include sufficient female
representation, leading to gender
bias codified in the
algorithms. Ultimately, algorithms
trained with human interference
can replicate human bias.

Theoretically, hiring algorithms should be
able to create an optimum amalgam of
excellent candidates based on pure
meritocracy. However, decision-making
algorithms -- such as these are designed
to mimic how a human would, in this
case, chose a potential employee --
ultimately work with associations, just as
our human brains. Without careful risk
mitigation, algorithms are not immune to
gender bias; in fact, in some cases, they
may instead exacerbate gender bias14.

13 Preuss 2017; Kulkarni & Che 2017
14 O’Neil 2016; Costa et al 2020; Kim 2019

15 Costa et al. 2020
16 Kim 2019

17 O’Neil 2016
18 O’Neil 2016

19 Chang, Prabhakaran & Ordonez 2019
20 O’Neil 2016

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 12

Lessons from the Amazon Case

As the majority of Amazon’s employees
were Caucasian men, their hiring
algorithms used this pattern as a
determining factor of success, and
therefore, discriminating against female
candidates24. Keywords such as “all-
women’s college” and “female” served as
proxies that ranked female applicants
lower25.

Information Systems theory can also
help explain the Amazon case. Research
suggests that there is a reciprocal
relationship between technologies, the
organisational environment and
organisational agents26. When
ranking algorithms for recruitment
are trained with biased data sets,
the technology impacts the organisation in
a way that reflects the organisational
operation, while at the same time
influencing the way it operates. This means
hiring algorithms trained with biased data
can replicate existing inequalities
while also introducing new ones.

Recall from the Literature
Review document that in 2014, Amazon
generated hiring algorithms to predict the
suitability of applicants. The algorithms
were trained using internal company data
over the past 10 years21. Years after, it was
then found that Amazon’s hiring algorithms
discriminated against female
applicants.22 This bias was not introduced
by the algorithms; rather, it was a
consequence of the biased
datasets that mirror
the existing gender inequality in the
workplace23.

21 Costa et al. 2020
22 Bogen 2019; Dastin 2018

23 Costa et al. 2020; O’Neil 2016
24 Costa et al. 2020; Faragher 2019

26 Orlikowski 1991

13

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 14

Data Science Approach:
Machine Learning

The choice of actual machine-learning algorithms used are to be as
transparent and as explainable28 as possible. Many
existing algorithms do not show the math, logic or programming
behind them. We prioritised transparency which allows us to
scrutinise the algorithmic judgements– with emphasis
on gender bias propagated from humans29 – over
the higher degrees of accuracy needed in a commercial or
production-ready system. Hence, we refrain30 from using
complex techniques such as deep neural networks.

Design decision

Design decision

Design decision

1

2

3

To simulate a real-world user-centred systems development
process, our data scientist programmer (co-author McLoughney)
is embedded within the panel sessions conducted at Policy Lab
(by co-authors Ruppanner and Njoto). Our data scientist is required
to observe, ask questions and solicit input from panel participants
– including assumptions, justifications, and clarifications – in order
to gain domain knowledge of the task at hand31. This meant the
hiring panel rather than the data scientist drove the logic of the
algorithm specifications, while the data scientist’s role is on the
technical facets - such as techniques for data wrangling, choice of
model, and programming decisions.

In our data science pipeline (from encoding candidates'
experiences against the desired job qualifications, to production of
the final model), existing external programming libraries and
packages are used in the algorithm. These de facto standard
tools are commonly used in data science and machine learning. In
the spirit of open source, they are developed by a community
of Python programmers who frequently review the code for issues
and actively maintain the code to be of a high standard32. This
means we are using well-accepted techniques for language
processing in the field.

Prioritising explainability and interpretability over commercial
accuracy

User-centred design and domain expert knowledge

Use of open source tools as opposed to black-boxing

27 Refer Footnote 1 for context
28 Miller 2018; Cheong & Leins 2020

29 Simply put, the decisions made by the human panel are the ’truth’, as far as the algorithm is
concerned, during its training phase to recognise and provide a correct judgement

30 Rudin 2018
31 See https://www.usability.gov/how-to-and-tools/methods/focus-groups.html.

Note that the remaining co-authors are careful not to interfere in the design process, to preserve
independence from experimenter bias (such as a priori or pre-established hypotheses) but are on-

hand to provide technical ideas and guidance
32 Take, for instance, the scikit-learn library used for machine learning projects – it is actively

developed and maintained in an open source fashion on GitHub. A full list of such external libraries is
before Section 1 in the Jupyter Notebook

Pauli et al. 2020; Honnibal & Montani 2017; McKinney 2010

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 15

Experimental Design and Key Tasks
A high-level overview of the key tasks performed by our algorithm are as
follows. To preserve clarity, technical details are abstracted
from the explanation. (References to the Jupyter Notebook are provided for
completeness).

To ascertain differences between sets of rankings, a
standardised method to mathematically compare sets of candidate rankings
is pre-defined. To elaborate, we need a way to “aggregate the data to get an
overall ranking because the data points are not statistically
independent” (Jupyter Notebook Section 1) due to the nature of the ranking
exercise (there can only be a single rank of e.g., ‘1’ per set of rankings), which
causes techniques such as average calculation to
fail. This aggregation is therefore required for our proposed machine learning
techniques 33.

To compare a candidate’s suitability with a job listing’s key selection criteria, we
need to firstly define processes to calculate resumé suitability. This includes
analysing key terms in the resumé, previous job durations, and education,
amongst others. (Jupyter Notebook Section 2). Highlights from this task include:

a. Keyword detection and matching to extract and compare key terms
in a candidate’s resumé to the key selection criteria. For example, a job in
“human resource[s]” must require its applicant to have either a degree
containing the qualifier “bachelor” or “master” to be ranked as higher for
the position.

b. Calculate a weighted metric of relevant experience by weighting the time a
candidate spent in a previous role (total number of months) with that role’s
similarity to the currently advertised position. This similarity is
calculated using a technique called word vectorization34. Word
vectorization intuitively groups together similar words, as these words
are mathematically more likely to co-occur close to each other, based on
common statistical patterns in existing real-world texts (for our
implementation, we use the Python spaCy library35). For example,
refer to Figure 4, which is a graphical illustration to show how the
technique -- given a list of words -- intuitively groups together similar words
(colours, occupations, and vehicles) in common clusters.

Figure 4. A graphical illustration of the word vectorisation technique in Experimental
Task 4. Note that words which are semantically similar are grouped together.

Task 1

33 Ailon, Charikar & Newman 2008
34 A technical exposition and simple example of the

technique is illustrated in Jupyter Section 2.2.1.
A brief primer on the technique with concrete examples is

available at
< https://towardsdatascience.com/understanding-nlp-

word-embeddings-text-vectorization-1a23744f7223>
35 The exact language model

is en_core_web_md (per Jupyter Notebook), and
documentation on the language model is at <

https://spacy.io/models/en/>.

Task 2

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 16

c. As common resumé formats (such as Microsoft Word’s DOCX) are catered
towards human readability (rather than machine analysis), a manual
extraction process is required to convert them into JSON36, which can be
used directly by our algorithm. (Note that a manual approach is preferable to
an automated one: the implementation of an automated process is beyond
the scope of this project due to the time and resources required). This allows
us to scrape the information in the CVs into our program for analysis.

The processes in the prior step are applied to the resumés studied by the human
panel (Jupyter Notebook Section 3), and sample statistics of the key features
e.g., distribution of relevant experience are calculated (Jupyter Notebook
Section 4). The calculation of sample statistics helps us discover key features of
the data – such as statistical properties of the distribution of human
judgements – and helps us check our code for validity.

Linear regression is applied to the rankings by human panellists, accounting for
different permutations of gender (Jupyter Notebook Section 5). Linear
regression is chosen as our predictor as it fits the key design decisions (it is more
explainable and an efficient open source implementation – scikit-learn -
is widely-used for Python), and as it is one of the most popular supervised ML
algorithms used37. In statistics, it is a classical technique (going back to Gauss &
Legendre), with a track record of over 200 years.

Finally, an unsupervised classification algorithm is applied onto the outputs
of Task 2 above, in an experiment to illustrate
how human panellists’ influence can be removed from a hiring algorithm by
removing the panellists’ rankings altogether from the training data. In
other words, an experiment in using purely statistical grouping techniques to
find commonalities between candidates. The k-means clustering algorithm is
chosen for this task: in a nutshell, given a number k, it attempts to
find k ‘clusters’ of common data points (individual resumés) which are
statistically like each other. (Jupyter Notebook Section 6). The k-
means algorithm is selected again based on the key design decisions (it
is explainable, widely used, and efficiently implemented), and due to its long
history (over 35 years old) of use in data mining and data science.

36 JavaScript Object Notation is a common format used in
machine learning and data science. See
< https://www.json.org/json-en.html>

37 Refer to a review by Doring (2018)
in KDNuggets <https://www.kdnuggets.com/2018/12/sup

ervised-learning-model-popularity-from-past-
present.html>.

Task 3

Task 4

Task 5

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 17

Experimental Results

Our first question is important because
it helps us determine
whether our supervised algorithm can
match the human rankings - can we
replicate the human panellists’
behaviour? We review the findings
from Task 4, i.e., linear regression. We
calculate the R-squared statistic
(Jupyter Notebook Section 6), in other
words, the statistic which indicates how
much the abstract model is capturing
the human behaviour.

Can the computer match human
decision-making?

Figure 5 shows the R-squared
value for each
of the predictor models, which
we express as percentages. When the
value reaches 100%, it means that the
human judgements and
the predictor judgement overlap compl
etely, i.e., a perfect fit between the
model and the human decisions.

This means the higher the percentage,
the more consistent the predictor is to
mimicking decision-making in our
human panel.

0
10
20
30
40
50
60
70
80
90

100

Data Analyst Finance Officer Recruitment Officer

R-
sq

ua
re

d
va

lu
es

Percentage of the variance in the Human Ranking Explained by Experience and Gender

Gender Original Gender Flipped

We found that the linear predictor could
accurately match
human panellists’ decision-making in
two jobs – the data analyst position and
the recruitment officer position. For the
recruitment officer position, the
machine and the human only produced
similar rankings when the candidates
were matched to their original gender.
Once the genders were flipped,
the predictor underperformed.

As seen on figure 5, we have identified
several key questions: What is going on
here – why does the algorithm become
less predictive of the human panel? Is
the bias in the algorithm itself or the
humans?

We categorise our hypotheses in two
broad categories -– Machine
Bias (MB) and Human Bias (HB) –
contextualised in our understanding of
how such classification or
prediction automation techniques can
cause gender bias, in a broader sense.

Figure 5. R-squared values for the linear regression models, according to CV gender, per industry. The R-squared values determine
correlation between human rankings and linear regression outputs and are expressed as percentages for convenience.

92.5

80.3

66.2

54.7

93.8

56.3

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 18

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 19

Machine Bias Could Influence Algorithmic
Outcomes in Three Meaningful Ways

Keyword model may have inherent gender bias

For the following hypotheses, let’s assume that the machine is working alone
without any human influence. Questions are: Can it introduce bias? And, if so, do we
have any indication that our classifier/predictor is doing this for the sample CVs
provided by UniBank?

We model our candidates’ work experiences based on a keyword matching
technique (Experimental Task 2) that captures relevant work
experience that includes: (1) time in relevant work and (2) experience that matches
search criteria.

Although we are using industry standard classifier and predictor algorithms (linear
regression and k-means respectively) and natural language processing techniques
(word vectorization in SpaCy), these may introduce gender bias if the data used to
train these algorithms are biased.

To elaborate this point, we are not focusing on the ranking data from the human
panel, but rather the data model used for mapping words in resumés to an
experience score. Specifically, used in Task 2 for computerised grouping
of statistically similar terms are trained on ‘standard’ de rigueur data science
corpora.

These corpora, OntoNotes/GloVe38, were trained on ”...various genres of text (news,
conversational telephone speech, weblogs, usenet39 and a large collection of web
data archived over the past few years (including Wikipedia)40 . The potential for
gender bias can arise from human tendency to use gendered language in daily
communiques, which in turn can be ’encoded’ – in some shape or form – in the
resulting model used for word vectorisation.

Not enough information; we cannot specifically identify these biases as state-of-the-
art language models are trained across big data sets with billions
of cases, but we must acknowledge that they exist41. A thorough dissection of the
biases in language models are an ongoing topic of research in the field of natural
language processing and are far beyond the scope of this research. It will require a
large multi-year project to understand how and why these biases are
encoded, and to understand how we can build ’big data’ corpora that minimises
such biases.

Another possibility is to build our own algorithm with concrete specifications to
mitigate gender bias, while acknowledging that bias exists in language models. The
latter point is, however, a possible direction for future research (see Future
Research).

38 According to
< https://spacy.io/models/en >, the

sources used are
specifically OntoNotes 5

< https://catalog.ldc.upenn.edu/LDC20
13T19 > and GloVe Common Crawl

39 Weischedel, Ralph et al. 2013
40 Pennington, Socher & Manning 2014

41 Bender & Friedman 2018

Hypothesis MB 1

Model is introducing gender bias for UniBank Sample
Evidence for MB 1

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 20

A second way the algorithm could
introduce bias into our sample is if
it weights experience and
education differently for the
original and gendered flipped CVs.
We apply the same keyword
ranking logic for both types
of resumés, but it is possible
that a classifier/predictor starts to
register gender differently across
these CVs based on the name of the
candidate.

To illustrate this hypothesis, we use
the unsupervised k-means
algorithm (Experimental Task 5)
which tries to cluster ‘similar’ CVs
based on the dimensions of
relevant experience and
requirement keyword
matching. Compared to linear
regression, k-means does not know
the human panellist’s rankings at
all, and instead tries to assign each
CV (data point) to one of several
clusters (analogous to how Figure 3
groups together ‘alike’ ranks). The
value of k is chosen by the
programmer to deliver an optimal
clustering42; in this experiment, a
value of k of 3 or 4 is chosen.

Please note that this is only a proof-
of-concept created purely as a
value-add to the project, for the
sake of discussion. It is not suitable
for a production-ready nor
commercial application and has not
been rigorously tested. A thorough
examination / investigation of the
k-means method is beyond the
scope of this project.

Figure 6 illustrates the clustering
result of k-means in two-
dimensional space, with the
numbers illustrating the different
CV rankings, provided solely for
information (and to reiterate,
is not used in the training of the
algorithm). If this hypothesis -

experience and education are
weighted differently for the original
and gendered flipped CVs -
were true, we would instead
see in Figure 6 that the
classifier ends up contributing
a disproportionate share of
experience to the
different models, i.e., the data
points will have a totally different
distribution depending on gender.

Data Analyst (Left: Original Genders; Right: Flipped Genders)

Financial Officer (Left: Original Genders; Right: Flipped Genders)

Recruitment Officer (Left: Original Genders; Right: Flipped Genders)

Figure 6. The Voronoi maps for outputs of k-means classification, purely on requirement keyword
matching and weighted experience matching (Experimental Task 2).

There is no evidence to support this claim, per Figure 6, as k-means performs the
same clustering (illustrated by the different coloured polygons) for both the original
and flipped samples. The distribution of data points (calculated statistics) does not
differ either.

42 There are many techniques to select appropriate values of k, the details of which
are beyond the scope of this report. A good reference is Pham, Dimov & Nguyen 2005

Algorithm is applying a different ranking for experience
and education for our original and flipped CVs

Hypothesis MB 2

Algorithm is applying a different ranking for experience and education
for our original and flipped CVs for UniBank sample

Evidence for MB 2

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 21

A third way hiring algorithms can
introduce gender bias is if the type of
data that were originally used to train
the algorithm have gender differences.
Over time, the machine reinforces and
amplifies these gender differences if
they are identified as important for
hiring a successful candidate.

Women’s disproportionate share of
caregiving can lead women to reduce
or exit employment. This gender
difference is an integral way that
women can be disadvantaged in
hiring as women may exhibit: (1) less
relevant experience; and
(2) fewer employment skills to match
selection criteria. These gender
differences used to initially develop the
hiring algorithm can become amplified
over time leading men to hold greater
hiring advantage.

To extrapolate the idea above, a
commercial production algorithm will
be trained on many data points of
human judgements, and often uses
sophisticated algorithms such as deep
neural networks (implemented using
e.g., Tensorflow or Keras) to optimise
for accuracy at the expense of
transparency, explainability, and
interpretability. Even the slightest bias
present into the initial set of data
points will be ‘ingrained’, or ‘encoded’,
in resulting neural network models.
This means the bias may be even more
entrenched in these algorithms than
our simple classifier/predictor. Our
experiment illustrates how bias in a
model can be introduced at inception
and will slowly build over time.

To further elaborate, even though it
takes way more time for a human to
review a CV (in a magnitude of
minutes, compared to, say, a
magnitude of seconds for a computer),
in the process of manually reading and
ranking CVs, a human has the added
advantage of reflection and review. For
example, a human can review
their past judgements in light of new
evidence (e.g. feedback from
colleagues on a new hiring policy,
or strong referee reports for an
otherwise borderline candidate);
whereas a machine’s model will simply
use the existing pre-trained model
unless otherwise instructed.

Women and men bring different levels of experience that, over time
become amplified in the algorithm to discriminate against women

Hypothesis MB 3

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 22

Figure 7 shows that men in our sample hold
more relevant experience measured in
months than women (cf Python Notebook
Section 4). Men and women are similarly
qualified for the position based on our
keyword model with men slightly less
qualified at the low ends but slightly more
represented at higher values. These gender
differences are being picked up by our
algorithm, across all industries, even for a
small sample of UniBank CVs. Over
time, a classifier/predictor trained on it may
amplify gender differences advantaging men
in their relevant experience. Also, based on
our observations, it is pertinent to note that
algorithmic classifiers/predictors for hiring
may exacerbate and ‘bake in’ a broad
spectrum of gender biases, especially if they
are touted as a ‘one size fits all approach’.
A hypothetical example of such a worst-case is
when a single hiring algorithm uses training
data from many CVs from an assortment
of different industries, rather than optimising
for hiring outcomes within specific industries.

There is partial evidence that men will
be favoured by the classifier/predictor in
terms of relevant experience, and that
women may hold higher keyword
qualifications. Hence, we identify that there
is a potential these could be amplified over
time and a direction for future research to
identify magnitude of impact for UniBank
hiring process (see Future
Research Directions later in the report).

Figure 7. Statistical distribution of (left) relevant experience
features and (right) requirement keyword features found in CV

data, based on the outputs of Experimental Tasks 2 and 3.

Women and men bring different
levels of experience that, over time
become amplified in the algorithm
to discriminate against women

Evidence for MB 3

23

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 24

Our next key contribution is to understand how the
human and machine interact to identify the ways in
which systematic gender bias is introduced into the
models. This allows us to address important questions
like: Do humans have certain preferences for jobs with
more women than those with more men? How does
that influence how candidates are ranked and how
reliable our algorithms are in predicting these
outcomes?

Our hypotheses follow.

Human Bias Could Influence
Algorithmic Outcomes in Two

Meaningful Ways

To recap, in our human panel, we drew a
sample of Masters and PhD students who had
hiring experience to understand which
components they identified as important for
hiring to code into our algorithm.

Across the conversations, three main
characteristics were identified as important for
ranking our CVs: (1) relevant experience; (2)
keyword match of experiences in CVs to desired
qualifications; and (3) education. Although
humans express these preferences, they may
apply them differently to each job type.

Humans apply unconscious bias in
ranking candidates as suitable for a
position

Hypothesis HB 1

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 25

Relevant Not Relevant

Data Analyst 1) Relevant Experience;
2) Keyword Match

1) Education

Finance
Officer

1) Relevant Experience;
2) Keyword Match

3) Education

Recruitment
Officer

1) Keyword Match
2) Education

1) Relevant Experience

Table 1. Characteristics of Candidates Human Panellists Used to Rank Applicants

Table 1 shows which of these three
components were significant and
improved the linear model’s fit in our
regression analyses. These differences
show that, although our recruitment
panel discussed these three
components as important, they only
used a subset of them to rank
candidates for the specific jobs, as
identified by summary statistics from
the analyses.

For the data analyst position, relevant
experience and keyword
match ultimately determined
the human panellists’ ranking;
education level was not important. For
the financial officer position, none of
the characteristics the human panel
indicated were important predicted
their ranking of candidates. For the
recruitment officer position, keyword
requirements and educational
qualifications predicted
their rankings, but relevant experience
proved non-significant.

These differences are important
because they indicate that the human
panel is inconsistent in matching stated
desires to actual rankings which
suggests these biases are
unconscious.

These biases have implications for
women in multiple ways. First, women
hold more educational
qualifications compared to men. Our
results suggest these may not matter
for industries with more men (i.e., data
analyst and finance recruitment office
jobs). Second, women may have less
relevant experience due to carer-driven
career disruptions which may make
them less appointable to male
dominated jobs like Data Analyst, but
more appointable to a female-
dominated industry like Recruitment
Officers. Finally, our panel ranked our
candidates for the Financial Officer job
based on criteria not captured by
education, experience or keyword
qualifications. This means the hiring
committee liked something else about
these resumés that we did not capture
in our rank predictor. This job appears
to have the most potential to be
gender biased which is of note for a
financial institution like UniBank.

Strong. We find that the human
panel was inconsistent in applying
equivalent logics to rank candidates. If
hiring algorithms use expert-driven
human rankings as one component of
their development (as seen in e.g.
Experimental Task 4), unconscious bias
with potential to discriminate against
women will be introduced. We have
evidence that women will be
disadvantaged in the male dominated
professions – Data Analyst and Finance
Officer.

Humans apply unconscious bias in
ranking candidates as suitable for a
position

Evidence for HB 1

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 26

Existing sociological research shows men are advantaged in
employment even when they work in female-typed jobs
with more women. We may find our human panel
expresses a strong preference for the male candidate
regardless of their education, experience or keyword
match.

Our regression results (available in the Jupyter Notebook
Section 5) show that gender bias for the male candidate is
evident in the two positions employing more men: (1) Data
Analyst and (2) Financial Officer.

When the gender was flipped or presented with a female
name but male experience. What is more, when we flipped
the genders, relevant experience and keyword match were
no longer predictive of our candidates’ success. This means
our panel preferred CVs with women’s names only when
their resumés had men’s experiences.

As Figure 8 shows, CVs with a man’s characteristics but a
woman’s name were 2.5 places better ranked than a man’s
name with a woman’s experience. This suggests that when
gender expectations are violated, our panel gave
preference to characteristics in the men’s CVs even if they
had a woman’s name.

For our Finance Officer position, we found that our panel
preferred men over women for this role by 4 ranks (Figure
9). What is notable about this job is that experience,
keyword match and education did not predict the ranking
of candidates (see Hypothesis HB1 above). This means
there is something distinct about the men’s resumés that
made our panel rank them higher, beyond experience,
qualification and education. This forms the most alarming
dimension of gender bias, as we are not capturing what
gives men the edge in these positions.

Humans exhibit a stronger preference for male
candidates

Hypothesis HB 2

Figure 8. An average woman with male characteristics ranked
2.5 places higher than average men in Data Analyst job

Figure 9. An average woman with average experience and
education ranked 4 places lower than average men in Finance

Officer job

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 27

For the Recruitment
Officer position, we do
not find the gender of the
applicant is significantly
associated with higher or
lower ranks. But we do find
that the predictability of the
flipped gender linear model
reduces dramatically,
compared to those of
the other roles. Figure 10
illustrates the difference
between R-squared
values, when the genders are
flipped, for all three industries:
the values indicate the nett
loss of R-squared values,
derived from the raw data in
Figure 5 earlier.

Strong, but only in male
dominated professions. We
find that the characteristics
of the male CVs were
strongly favoured by our
recruitment panel in
positions that employed
more men. We find flipping
the gender for the female
dominated job –
Recruitment Officer –
dramatically reduced model
fit which suggests our panel
was impacted by this
change.

Figure 10. Difference in R-squared values for linear regression models, after the gender is
flipped. Note that the Recruitment Officer role’s linear model has more than three times

the loss of prediction accuracy, compared to the other two models’ R-squared loss.

Humans exhibit a stronger
preference for male
candidates

Evidence for HB 2

0

5

10

15

20

25

30

35

40

Data Analyst Finance Officer Recruitment Officer

R-
sq

ua
re

d
va

lu
e

di
ff

er
en

ce
 (a

s
pe

rc
en

ta
ge

)

Difference in R-squared values for linear regression,
after gender is flipped

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 28

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 29

Discussion and Future Work

This project provided preliminary insight
into how gender bias is introduced into
hiring algorithms. By bringing together a
hiring panel to rank real world CVs, we
developed an algorithm to match their
preferences. This included the strong
specification to match experience
against desired qualifications, and
‘embedding’ of the data scientist into the
Policy Lab. Even with this small dataset
and simple algorithmic logic, we found
gender bias was introduced into some of
the hiring outcomes.

We found the results for the Financial
Officer position proved the most
troubling. Our panel preferred men for
this position regardless of their
educational attainment, relevant
experience and keyword match to hiring
specifications. The size of this effect was
large – our men were ranked 4 points
higher than women as suitable for this
job. This means that our panel had a
strong preference for men in this position
regardless of training, ability or match to
the job. If human decision-making logics
were built into a hiring algorithm, women
would be much less successful in
accessing an interview for this job. Our
argument is that any amount
of initial bias – no matter how little -- will
perpetuate in the algorithmic models
used, further continuing the bias, and
thus reinforces it by keeping human
oversight out of the loop. We are
relying on a small sample of data, but this
type of gender bias has been
documented in large companies like
Amazon. For UniBank, for whom financial
positions are core business, this may lead
to gendered job sorting based on human-
preference rather than individual ability.
This is a drain on productivity and human
capital maximization, especially since the
Australian Bureau of Statistics shows this
occupation to have the greatest gender
balance.

We also found gender bias in the male
dominated position of Data
Analyst, whereby women’s resumés were
ranked higher only when they had male
characteristics. This suggests a degree of
gender bias against women in this
space. Also, our human panel valued
relevant experience and keyword match
but not educational qualifications in
ranking our candidates for this role. Since
women are more likely to experience
career disruptions which lead to less
relevant experience, women may be
particularly disadvantaged in these job
types.

Algorithms are generally trained
to record and memorise past
decisions and learn from
them20. This implies that the
algorithms memorise the patterns
of previous decisions
and can replicate the patterns of
these decisions. Without concrete
mitigation plans, algorithms adopt
human decision patterns and
replicate them as a predictor of
success metrics. Here,
humans may rely on internalized
gender bias to make hiring
decisions or hiring panels may fail
to include sufficient female
representation, leading to gender
bias codified in the
algorithms. Ultimately, algorithms
trained with human interference
can replicate human bias.

The Recruitment Officer job, which
heavily employs women, exhibited some
interesting variations with implications
for women’s employability. First, only
keyword requirements and educational
attainment significantly predicted the
ranking of candidates. Relevant
experience, which captures employment
disruptions, did not predict rankings even
though our panel viewed it as important.
This means women caregivers should
experience less disadvantage in hiring in
these jobs. Second, we found the model
fit weakened by half when we flipped the
genders. This means something about the
experience of reading a woman’s
resumé with a male name led the hiring
panel make less consistent decisions tied
to keyword requirements. This suggests
that our panel wants men and women
with keywords that match their gender
for this position.

Our results clearly indicate that the
human panel holds unconscious bias that
introduces gender bias into the models.
The machine also has potential to
compound this disadvantage by ranking
keywords and experiences against
gendered language. We also show that
men had slightly more experience and
women better match to keyword
requirements. Each has the potential, if
extrapolated over a larger sample of data,
to introduce, replicate and reinforce
gender bias in hiring. These trends are
particularly troubling given that, for
commercial systems, these decisions are
often made in “black boxes” meaning we
cannot see, measure or understand
how and the scope of gender bias in
existing commercial hiring algorithms. An
organization like UniBank should be
aware of this potential bias: we show
here how simply humans can introduce
bias into an algorithm using three
reasonable ranking dimensions:
education, keyword requirements, and
relevant experience.

29

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 30

Our research project provides an initial snapshot into the process through which
gender bias is introduced into algorithms. It is an integral first step that indicates
clear directions for future research as outlined below:

Expanding analyses to estimate bias in hiring across a comprehensive dataset of
occupations within the UniBank corporate structure. We are drawing upon three
key roles to understand gender bias in algorithms for those that are male-
dominated, gender equal, and female dominated but a comprehensive study
with resumés from all occupations would illuminate the scale of the problem.

Our project provided a “mock” hiring panel to contextualize decision-making in
this process. Embedding within the UniBank hiring panels would allow us to
more accurately estimate existing bias and corporate culture.

Hiring algorithms are only one component of a recruitment process
and shouldn’t be touted as a ‘one size fits all’ approach. The initial ranking of
candidates can introduce bias – as we have seen in our experiments -- but so can
the proceeding processes which further entrench algorithmic bias. Providing a
whole of process evaluation that includes final hiring decision would allow us to
more accurately isolate the role of algorithmic against human judgements.

Expanding social and legal theory to which decisions made on the basis
of gender are considered discrimination on the basis of gender. This analysis will
allow a concrete formulation of policy response that is coherent in its
assessment and procedures against an ‘automated discrimination’. It offers a
policy basis to a strategic algorithmic model that balances both fairness and
accuracy in a decision-making.

We need approaches that avoid the economic loss and injustice of women not
being invited to participate in the workforce to the right extent. Just as a society
evolves and, tends to question its biases, conscious and unconscious, we can
design our learning models to “check their biases” over
time. Automating oversight, self-reflection, input from moderators, and
incorporating established techniques such as quotas should not only mitigate
the effect of accelerating the effect of bias, but also support society in hiring
more fairly. Like any improvement, it is unlikely to be easy or consistently
successful, but it is achievable43.

43 Kleinberg, J. & Raghavan 2018

Mapping bias across all roles
Future direction 1

Accounting for corporate culture
Future direction 2

Linking hiring algorithms to actual hiring decisions
Future direction 3

Legal, social and policy analysis to ‘automated’
discrimination

Future direction 4

Rethinking learning techniques for data and computer
scientists

Future direction 5

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 31

Conclusion

In conclusion, this report summarises the
factors – from both the sociological and the
technical perspectives – on how and why
gender bias can be exacerbated
when algorithmic systems form part of
the decision-making process.

Moving forward, our analysis has
uncovered several recommendations and
best practices to reduce gender bias – both
existing and anticipated – resulting from
the interplay between human and
algorithmic judgement.

Recommendation 1

Provide training programs to introduce
human resource professionals to the
potential of gender bias in algorithmic
judgements in hiring process.

Recommendation 2

Complete regular audits of hiring by gender
across all positions to identify potential
roles that are vulnerable to gender
discrimination.

Recommendation 3

Create established quota systems for hiring
to ensure women are not excluded from
male-dominated or gender balanced
professions based on hiring biases.

Recommendation 4

Create proprietary hiring algorithms that
are transparent and trained with the aim of
reducing gender bias in hiring, with regular
audits of algorithm output and models
(both trained on human judgment as well
as unsupervised).

32

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 33

Bibliography

Algorithms are generally trained
to record and memorise past
decisions and learn from
them20. This implies that the
algorithms memorise the patterns
of previous decisions
and can replicate the patterns of
these decisions. Without concrete
mitigation plans, algorithms adopt
human decision patterns and
replicate them as a predictor of
success metrics. Here,
humans may rely on internalized
gender bias to make hiring
decisions or hiring panels may fail
to include sufficient female
representation, leading to gender
bias codified in the
algorithms. Ultimately, algorithms
trained with human interference
can replicate human bias.

33

Ailon, N., Charikar, M. and Newman, A. (2008). Aggregating inconsistent information: ranking and clustering. Journal of the ACM
(JACM) 55(5): 1-27. Available at: http://dimacs.rutgers.edu/~alantha/papers2/aggregating_journal.pdf.

Bailey, A. H., LaFrance, M., and Dividio (2018). Is Man the Measure of All Things? A Social Cognitive Account of Androcentricism.
Personality and Social Psychology Review, 23(4): 307–331. DOI: 10.1177/1088868318782848.

Bender, E. M., & Friedman, B. (2018). Data statements for natural language processing: Toward mitigating system bias and
enabling better science. Transactions of the Association for Computational Linguistics, 6: 587-604. DOI:
doi.org/10.1162/tacl_a_00041.

Bogen, M. (2019). All the ways Hiring Algorithms Can Introduce Bias. Harvard Business Review. Available at:
https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias.

Burgess, N. (2013). The Motherhood Penalty: How Gender and Parental Status Influence Judgements of Job-Related Competence
and Organizational Commitment. Seminar Research Paper Series, paper 32. Available at:
https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1035&context=lrc_paper_series.

Cheong, M. and Leins, K. (2020). Who Oversees the Government? Modernising Regulation and Review of Australian Automated
Administrative Decision-making’, in Boughey, J. and Miller, K. (eds) Government Automation and Public Law Project
Workshop (forthcoming).

Chang, K. W., Prabhakaran, V. and Ordonez, V. (2019). Bias and fairness in natural language processing, presented at the
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts, available at:
https://www.aclweb.org/anthology/D19-2004/ (accessed 17 September 2020).

Cohen, S. L. (1976). The basis of sex-bias in the job recruitment situation. Human Resource Management, 15(3). DOI:
10.1002/hrm.3930150303.

Costa, A., Cheung, C. and Langenkamp, M. (2020). Hiring Fairly in the Age of Algorithms. Research Paper, Cornell University.

Dastin, J. (2018). Amazon scraps secret AI recruiting tool that showed bias against women. Reuters. Available at:
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-
showed-bias-against-women-idUSKCN1MK08G.

Faragher, J. (2019). Is AI the enemy of diversity?. People Management, 6 June, viewed 20 April 2020. Available at:
https://www.peoplemanagement.co.uk/long-reads/articles/is-ai-enemy-diversity.

Gaucher, D., Friesen, J. and Kay, A. (2011). Evidence That Gendered Wording in Job Advertisements Exists and Sustains Gender
Inequality. Journal of Personality and Social Psychology, 101(1): 109–128. DOI: 10.1037/a0022530.

Han, J., Kamber, M., and Pei, J. (Eds). (2012). Data Mining: Concepts and Techniques (3rd Edition). Elsevier. DOI: 10.1016/B978-0-
12-381479-1.00017-4.

Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural
networks and incremental parsing. Judge, T. A., and Cable, D. M. (2004). The Effect of Physical Height on Workplace
Success and Income: Preliminary Test of a Theoretical Model. Journal of Applied Psychology, 89(3), 428–441. DOI:
10.1037/0021-9010.89.3.428.

Kleinberg, J. and Raghavan, M. (2018). Selection Problems in the Presence of Implicit Bias’, in. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany. DOI: 10.4230/LIPICS.ITCS.2018.33. Available at:
https://drops.dagstuhl.de/opus/volltexte/2018/8323/pdf/LIPIcs-ITCS-2018-33.pdf.

Kim, P. T. (2019). Big Data and Artificial Intelligence: New Challenges for Workplace Equality. University of Louisville Law Review,
57: 313–328. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3296521.

Kulkarni, S. and Che, X. (2017). Intelligent Software Tools for Recruiting. Journal of International Technology & Information
Management, 28(2): 1–16. Available at:
https://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=1398&context=jitim.

Lewicki, R., Polin, B. and Lount Jr., R. B. (2016). An Exploration of the Structure of Effective Apologies. Negotiation and Conflict
Management Research, 9(2). DOI: 10.1111/ncmr.12073.

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 34

Algorithms are generally trained
to record and memorise past
decisions and learn from
them20. This implies that the
algorithms memorise the patterns
of previous decisions
and can replicate the patterns of
these decisions. Without concrete
mitigation plans, algorithms adopt
human decision patterns and
replicate them as a predictor of
success metrics. Here,
humans may rely on internalized
gender bias to make hiring
decisions or hiring panels may fail
to include sufficient female
representation, leading to gender
bias codified in the
algorithms. Ultimately, algorithms
trained with human interference
can replicate human bias.

34

Lim, K. H., Benbasat, I. and Ward, L. M. (2000). The Role of Multimedia in Changing First Impression Bias. Information Systems
Research, 11(2): 115–136. Available at: https://www.jstor.org/stable/23015878.

Lindsay, P. H., Norman, D. A. (1977). Human Information Processing: An Introduction to Psychology, Academic Press.

McKinney, W. (2010). Data structures for statistical computing in python, Proceedings of the 9th Python in Science Conference,
445.

Miller, T. (2018). Explanation in Artificial Intelligence: Insights from the Social Sciences. Artificial Intelligence, 267: 1–38. DOI:
10.1016/j.artint.2018.07.007.

O’Neil, C. (2016). Weapons of Math Destruction. Crown Books.

Orlikowski, W.J. (1991). Integrated information environment or matrix of control? The contradictory implications of information
technology. Accounting, Management and Information Technologies, 1(1): 9-42. DOI: 10.1016/0959-8022(91)90011-3.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perot, M., Duchesnay, E. (2011). Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12: 2825–2830. Available at:
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf.

Pennington, J., Socher, R. and Manning, C. D. (2014). GloVe: Global Vectors for Word Representation. EMNLP: 1532–1543.
Available at: https://nlp.stanford.edu/pubs/glove.pdf. Pham, D. T., Dimov, S. S., & Nguyen, C. D. (2005). Selection of K in
K-means clustering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science, 219(1): 103–119. DOI: 10.1243/095440605X8298. Preuss, A. (2017). Airline pilots: the model for intelligent
recruiting?. Recruiter, 12–13. Rivera, L. A. (2012). Hiring as Cultural Matching: The Case of Elite Professional Service
Firms. American Sociological Review, 77(5): 999–1022. DOI: 10.1177/0003122412463213.

Rudin, C. (2018). Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models
Instead. Natural Machine Intelligence, 1: 206–215. Available at: http://arxiv.org/abs/1811.10154.

Russo, N. F. (1976). The Motherhood Mandate. Journal of Social Issues, 32(3). DOI: 10.1111/j.1540-4560.1976.tb02603.x.

Sczesny, S., Formanowicz, M., Moser, F. (2016). Can Gender-Fair Language Reduce Gender Stereotyping and Discrimination.
Frontiers in Psychology, 7(25): 1–11. DOI: 10.3389/fpsyg.2016.00025.

Virtanen, P., Gommers, R., Oliphant, T. E.,Haberland, M., Reddy, T.,Cournapeau, D.,Burovski, E.,Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M.,Wilson, J., Millman, K. J.,Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
Carey, E. J., Polat, I., Feng, Y., Moore, E., VanderPlas, J., Laxalde, D., Perktold, Cimrman, J. R., Henriksen, I., Quintero, E.A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P, and SciPy 1.0 Contributors. (2020) SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272.

Weischedel, R., et al. (2013). OntoNotes Release 5.0 LDC2013T19. Web Download. Philadelphia: Linguistic Data Consortium.

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting 35

Appendices

CIS & Policy Lab, The University of Melbourne | Literature Review: Gender Occupational Sorting Page 1 of 19

—
CIS & Policy Lab, The University of Melbourne
Interim Report for UniBank (Teachers Mutual Bank Limited).

Literature Review on
Gender Occupational
Sorting
The Role of Artificial Intelligence in Exacerbating
Human Bias in STEM Employment
26 June 2020

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 2 of 19

Table of Contents

Executive Summary .. 3

1.0. Current State of Hiring .. 4
1.1. Gendered Roles, Gendered Judgements ... 4

1.2. Hiring in STEM .. 5

2.0. Artificial Intelligence, Algorithms, and Bias ... 6
2.1. How do Decision-making and Classification Algorithms Work? 6

2.2. Algorithmic Fairness and Bias: A Primer ... 7

2.3. Contemporary Critiques on Automated Decision Making ... 8

3.0. Risks of Bias in Algorithmic Hiring ... 10
3.1. Case Study: Amazon’s Experiment Gone Wrong ... 10

3.2. Job sorting: translating history into future outcomes ... 11

3.2. Algorithmic Hiring: Risks for Women in STEM .. 12

3.3. Hiring and Protected Attributes.. 13

4.0. Research Directions ... 14
4.1. Hypotheses and Methods... 14

4.2. Future Research ... 15

References.. 16

Project Contact ... 19

Table of Figures

Figure 1: Model Creation Process (Costa et al., 2020).. 6

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 3 of 19

Gender Occupational Sorting: The Role of Artificial
Intelligence in Exacerbating Human Bias in STEM

Employment

M. Cheong, R. Lederman, A. McLoughney, S. Njoto, L. Ruppanner, A. Wirth1

Executive Summary

This project investigates the extent to which algorithms that classify resumes can be biased against women.
A key contribution is the development of a proof-of-concept algorithm to rank resumes. We use this to
identify how AI techniques analyse patterns and perform classifications for new resumes, given a set of pre-
established decisions on a prior set of resume data (i.e. training data). We introduce humans into the
design to understand how bias – both conscious and unconscious - can become part of the decision-making
process.

We use an innovative research design, drawing upon a panel of graduate students with experience in
recruitment to rate fictitious job candidates against a job advertisement. The fictitious job candidates are
represented by both simulated CVs and/or anonymised CVs provided by UniBank that are populated with
fictitious biographic data. The panel members first rate the candidates alone and then as a combined panel.
Based on the discussion and outcomes from the panel, we adjust our algorithm to their preferences to
draw a new list of potential candidates. This allows us to compare multiple job candidate rankings – those
done by our panellists without group input, those done by the group, and the group’s outcomes which we
will integrate into our AI system. This innovative approach allows us to understand where and how bias
against women is introduced.

This approach is novel and innovative but builds upon a robust literature base on AI and gendered hiring
that is outlined in more detail below.

1 Authors are listed in surname-alphabetical order.

CIS & Policy Lab, The University of Melbourne | Literature Review: Gender Occupational Sorting Page 4 of 19

1.0. Current State of Hiring

1.1. Gendered Roles, Gendered Judgements

It is evident that women’s position in society has shaped the way in which women are socially perceived
(Sczesny et al. 2016). This translates into androcentric biases as a norm in describing both men and women
(Hegarty & Buechel 2006). Androcentric pronouns and references are more generally used to describe
humans in data and documentations. Men are perceived to be a more typical member and the standard of
‘human’ in general (Sczesny et al. 2016). On the contrary, in categories where women are overrepresented,
women are perceived to be the typical member of the respective group; for instance, when it comes to
describing ‘parenting’ (Hegarty & Buechel 2006). These inaccuracies and generalisation of data become
problematic when trained into algorithms (Section 2.0) as they may generate results that are equally
inaccurate or worse, expand the inaccuracies by making decisions blindly based on these data.

Key literature on the fairness of hiring often mentions the impact of language in gender discrimination,
from the use of gendered words in job advertisements to the use of certain words in describing oneself in
job applications (Stout & Dasgupta 2011; Gaucher, Friesen & Kay 2011). Gaucher et al. (2011) have found
that there are gender differences in the use of language and psychological traits between men and women.
It has been reported that women would refer to more communal words and utilise social and expressive
words in comparison to men (Gaucher et al. 2011). Not only do men and women tend to use different
adjectives to describe themselves, they also use different adjectives to describe other people according to
gender. For instance, Schmader, Whitehead & Wysocki (2007, cited by Gaucher et al. 2011) have found that
letters of recommendations that describe men contain words that describe ‘prominence’, such as
‘outstanding’ or ‘unique’. On the contrary, letters that describe women suggest words that are contain
more social and less directive connotations, such as ‘warm’ and ‘collaborative’ (Sczesny et al. 2016).

As evidenced by a landmark case study on Amazon’s automated decision-making experiment for hiring
(Section 3.1), the use of keywords that describe gender, such as ‘women’s chess club captain’ or ‘women’s
college’ is highly critical (Dastin 2020). However, as indicated, it is also evident that similar patterns occur in
the feminine and masculine choice of words when explaining oneself. As hiring algorithms are designed by
those in charge and based on existing data, they can limit themselves to a narrower candidate demography
(Faragher 2019): bearing in mind that protected groups haven’t been in charge or been in high frequency.
Consequently, as women have historically been underrepresented in the workforce, especially in senior
positions, the language differences can be a significant variable. In fact, numerous algorithmic hiring tools
have filtered out CVs that incorporate feminine words, such as ‘collaborative’ or ‘supportive’, in comparison
to those that include more masculine words, such as ‘execute’ or ‘competitive’ (Faragher 2019).

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 5 of 19

1.2. Hiring in STEM

Lambrecht and Tucker (2020) investigate algorithmic judgement in microtargeting audiences for advertising
STEM (Science, Technology, Engineering and Math) job vacancies. With its intention in responding to
policymakers’ concerns about the underrepresentation of women within the field, careful consideration
was put into gender-neutral targeting. Their job advertisement was tested in 191 countries with individuals
in their most productive years and shown to 20% more male than female audiences. Lambrecht and Tucker
(2020), however, suggest that this is not based on the predictions on the likelihood of engagement with the
ad; in fact, it is found that women were more likely to engage with the ads in comparison to men. However,
it is suggested that instead, because of this, women are perceived to be a high-quality demographic and
therefore are a higher-priced population as the object of advertisements. In adjusting to the cost
effectiveness, therefore, they are shown these advertisements, not according to gender balance, but cost
and profit balance. It is, therefore, concluded that, with the capitalistic principle, algorithms are prone to
generate discriminating outcomes even in relatively and intentionally the most ‘neutral’ setting (Lambrecht
& Tucker 2020).

These issues cannot remain unchallenged. The absence of information on opportunities is a highly
significant hindrance to individuals who are pursuing them (Kim, as cited by Bogen 2019). This should
reflect the current flaw in the implementation of equal opportunity and equal access for all, especially for
women (Dalenberg 2018). When it comes to automated hiring and candidate selection systems, the
complex nature of AI, however, creates another layer of concern, as tracking the microtargeting decisions
within the algorithm cannot be fully tested (Raub 2018). When decision making is determined by a system
that further adds a layer of opacity to the decision-making process (Section 2.1), the accountability of the
decision becomes questionable.

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 6 of 19

2.0. Artificial Intelligence, Algorithms, and Bias

2.1. How do Decision-making and Classification Algorithms Work?

Big Data and Machine Learning are the two pillars that are pivotal to defining modern AI. Big Data refers to
the massive volume of data, with datasets characterised by massive volume, high velocity in generation, its
vast variety of sources and types, and its validity (Nersessian 2018). Although the sources of these data
vary, most data are involuntarily donated by digital users, such as social media activities, website traffic,
sensor data and online platforms, which provide insights on real-time societal behaviour and networks
(Seely-Gant & Frehill 2015; McFarland & McFarland 2015).

As Raub (2018) defines it, Machine Learning (ML) is a family of procedures that can automatically generate
results from datasets and improve at tasks with experience. This is only a subset of what constitutes AI.
Modern ML techniques such as deep neural networks consist of models which improve in accuracy as more
cases or data samples are used in ‘training’ it. For AI to work, its algorithms need to be supplied with
massive sizes of datasets and corresponding patterns, fed into its algorithmic models to generate
assumptions and predictions. Costa et al. (2020) succinctly described this modelling process in a diagram, as
shown in Figure 1.

Figure 1: Model Creation Process (Costa et al., 2020)

An AI system generates desired outputs by answering a question using the value of a target variable that
programmers have installed. AI is fed with a variety of datasets; however, most of the time these data are
sourced from Big Data, due to its volume and velocity. As Big Data is often incomplete due to gaps in data
(e.g., random noise from sensors, simple errors in data entry) as well as the need for privacy and anonymity
(e.g., redaction of personally-identifiable attributes to comply with laws and policy), there is a need to fill in
these gaps. In doing this, programmers usually use a proxy to represent a characteristic; for instance, sexual
orientation, political affiliations, religious convictions and race are often represented by Facebook “likes” or
similar proxies, and these have been proven to be considerably accurate (Dattner et al. 2019). This is
because not every demographic trait is explicitly recorded in digital prints; therefore, segmenting the digital
citizens into categories requires a level of generalisation and representation of values. These proxies will
then be rendered into algorithms that act as the ‘engine’ of the AI systems (Raub 2018). Domingos (2012)
suggests that algorithms work in amalgamations of three components: representation, evaluation and
optimisation. According to Domingos (2012), representation refers to the alteration of ‘language’ of the

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 7 of 19

classifier for the computer to access and learn; evaluation points to the sorting out the invalid classifiers
from the valid ones; and optimisation refers to the examining of the highest-scoring classifiers.

A key criticism of modern machine learning techniques, such as neural networks, lies in its
incomprehensibility (i.e., non-explainability) due to its technical complexity, and lack of mathematical proof
of behaviour. Simply put, such models have mechanics which "may be hard to comprehend for experts and
can be virtually incomprehensible to non-experts" (Kolkman 2020). This risk is overshadowed by the fact
that “cloud technology providers such as Amazon’s AWS come with ‘out-of-the-box’ services [for complex
classification and prediction]… without [the operator] even needing to know how to construct such a
[decision-making neural] network” (Cheong & Leins 2020, forthcoming). To concisely summarise why these
algorithms are low in explainability (Miller 2017), two key factors are: (i) the complex model structure
(Cheong & Leins 2020, forthcoming), modelled upon numerous connections, statistical weights, and virtual
‘neurons’ akin to a human brain; and (ii) the sheer volume of data needed to train these models means that
oftentimes, the particular mathematical idiosyncrasies of a model cannot be explained. For a thorough and
accessible exposition of the technical and practical implications of constructing, training, (and more
controversially) basing decisions upon generated models, refer to Barocas & Selbst (2016), Tolan (2018),
Boscoe (2019), and Mittelstadt et al (2016).

2.2. Algorithmic Fairness and Bias: A Primer

The field of Algorithmic Fairness is relatively new, studying the inherent design flaws and bias introduced to
AI and other automated systems. The field initially focused on mathematical definitions of bias, treating it
like another parameter to optimize. More recently, the field is moving away from the strict mathematical
definitions and towards cross-discipline work with experts in other fields, for example the fields of
philosophy and law.

To elaborate on the definition of algorithmic biases, Kim (2019) proposed three core algorithmic biases,
which are record error bias, intentional bias and statistical bias. Record error bias refers to the bias that
occurs in incomplete or misrepresentative datasets. This greatly affects the accuracy of prediction and
decision making by AI, especially for the underrepresented groups. Intentional bias is the discriminatory
action that is intentionally ingrained within the algorithms in order to explicitly box some groups out of the
equation. However, this can also be done for the opposite reason, to battle the existing structural
inequality. Lastly, Kim refers to statistical bias. This refers to the associations that algorithms make to
demographic traits to make decisions based on what is recorded in statistical data.

In academic papers discussing the notion of fairness – centring upon a case study of a controversial criminal
risk-assessment system (Section 2.3) – researchers have found that different ideas of fairness can co-exist
when assessing an automated decision-making system or model (Chouldechova 2017; Kleinberg et al.
2016). Importantly, these different notions of fairness are known in some scenarios to be incompatible: a
single model cannot meet every reasonable or accepted definition of fairness, and therefore bias must exist
in one way or another inside the model. This restriction doesn’t hold if the model is extremely trivial or, at
the other end of spectrum, where the model is perfect – neither of these extremes is feasible. Therefore,
we must carefully select which definitions of fairness we value and design our model towards meeting
those definitions. (Narayanan 2018; Verma & Rubin 2018). This is not a trivial matter: different parties may
value the (inconsistent) notions of fairness differently, depending on their involvement and how they are

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 8 of 19

impacted by the model. Further, the ethics and values of the model generally originate from the people
designing the model, where implicit bias can be introduced unintentionally, and even the problem or data
given by the client can frame a particular viewpoint or solution (Barabas et al. 2020).

Although this paper realises the importance of the three biases, more attention will be given to statistical
bias in terms of the research study. Statistical bias is inextricably linked to arguments in algorithmic
fairness: as seen earlier, one can argue that an AI model is ‘algorithmically fair’ given the statistics are
unbiased, despite its outcome which is unfair to stakeholders. In particular, a key deliverable from this
research project is the statistical identification of human biases2 which are captured in even a simple, naïve
classifier prototype.

2.3. Contemporary Critiques on Automated Decision Making

Before moving on to study how bias and (un)fairness exists in algorithmic hiring practices, we briefly survey
contemporary issues associated with automated decision making.

Since the early 2000s, the value of computer-based, automated, decision marking (ADM hereinafter) has
been recognised by administrators and decision-making bodies. The Australian Government’s Automated
Assistance in Administrative Decision-making report to the Attorney-General was “considered to be ahead
of its time in anticipating the usage of expert programs to help human administrators in their decision
making” processes (Cheong & Leins 2020, forthcoming). The report has identified algorithms – when
implemented as part of complete systems (Boscoe 2019; Cheong & Leins 2020, forthcoming) – can be used
for purposes such as giving legal advice and “profil[ing] risk factors amongst taxpayers” (Administrative
Review Council, 2004). Per Cheong & Leins (2020, forthcoming), the general algorithms employed in such
systems circa 2000s are now easily and readily implementable – and in common modern use by data
scientists – with pre-built toolkits and packages in modern programming languages (such as Python).
Guided with this ethos, this project will deliver a similar working prototype as part of its outcomes.

When it comes to automated decision-making disadvantaging certain sections of the population, two
modern cases in algorithmic fairness and ethics come to mind. The first case is in risk assessment for
criminal recidivism (Tolan 2018; Boscoe 2019). A 2016 ProPublica paper (Angwin et al., 2016), on the
COMPAS Risk Assessment instrument by Northpointe Inc., sparked a significant amount of academic and
public debate and discussion. The argument that ProPublica made against COMPAS was that it was biased
against African American defendants, giving them on average a higher risk score compared to their white
American counterparts. This argument was met with criticism from both Northpointe and the academic
community, mainly due to ProPublica’s choice of bias (fairness) definition. With Northpointe’s choice of
fairness definition, it could be argued that COMPAS was indeed fair; however, a defendant is rightly
concerned with the probability that they will be incorrectly classified as high-risk, due to their ethnic
background. Researchers have shown that it was mathematically impossible for both fairness definitions
chosen by ProPublica and Northpointe to hold simultaneously (Chouldechova 2017; Kleinberg et al., 2016).

2 Please note that ‘bias’ has a specific meaning when it comes to statistics and data science; for the purposes of this paper, ‘bias’ is
used interchangeably with ‘human bias’, unless otherwise specified. In a nutshell, “statistical bias is defined as the difference
between the parameter to be estimated and the mathematical expectation of the estimator” (King et al, 2018).
See: King et al (2018). “4.3 - Statistical Biases | STAT 509”. The Pennsylvania State University.
<https://online.stat.psu.edu/stat509/node/29/>

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 9 of 19

There are inherent incompatibilities between these definitions of ‘fairness’, of the algorithm itself versus
the people impacted by it. In this case study, we find tensions in a system’s purported outcome – should it
prioritise mathematical efficiency by trading off ethical and legal notions of fairness and equality?

Another ethical case study of automated decision making is the use of predictive-policing software (Byrne
& Cheong 2017; Ferguson 2017). In a thorough analysis of predictive-policing software, Ferguson (2017)
identified that the modern application of predictive-policing does not align with the original intention of
predictive-policing (which they term Predictive Policing 1.0, using platforms such as PredPol). The wrong
assumption had been used in building the model: the original version (“1.0”) tried to deter “place-based
property crimes” because it focuses “...only on crimes that were regularly and rather consistently reported
(burglary, auto theft, and theft from auto) … [and] avoids many of the data-collection problems of a
broader crime focus” (Ferguson 2017). However, with this assumption for “1.0” holding (which is subject to
debate), modern predictive-policing (termed version “3.0”) focusing on “person-based crimes” cannot
depend on the existing models used (Ferguson 2017). Here, instead of preventing crime to property in
certain locations, the wrong assumptions are used in predicting individuals’ propensity to offend within
those locations. With these wrong assumptions, police departments will act by sending more resources to
the area predicted to have more crime; and hence more of that crime is reported; creating a positive
feedback loop. In other words, this can be characterised as the model building a self-fulfilling prophecy in
entrenching prejudice against minorities – the more police resources deployed in an area, the more people
of colour will be identified by police as suspicious, leading to a justification for prolonged police presence
(Ferguson 2017; Byrne & Cheong 2017). This case study highlights how the feedback loop above and
overfitting the model to the data (not discounting the wrong assumptions in model building) – amongst
others covered in Ferguson (2017) - can have negative implications to civil liberties and exacerbates unjust
treatment based on race and class.

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 10 of 19

3.0. Risks of Bias in Algorithmic Hiring

3.1. Case Study: Amazon’s Experiment Gone Wrong

Before moving into a detailed survey of how algorithmic hiring poses risks to gender equality, particularly in
the STEM fields, we review how such a system has gone wrong3.

According to Reuters, Amazon Inc.’s Machine Learning team has “been building computer programs since
2014 to review job applicants’ resumes with the aim of mechanizing the search for top talent” (Dastin
2018):

“The company’s experimental hiring tool used artificial intelligence to give job candidates scores
ranging from one to five stars - much like shoppers rate products on Amazon, some of the people
said. …

“They literally wanted it to be an engine where I’m going to give you 100 resumes, it will spit out the
top five, and we’ll hire those. ...

“But by 2015, the company realized its new system was not rating candidates for software
developer jobs and other technical posts in a gender-neutral way...”
(Dastin, 2018).

The system was known to “systematically downgrade women's CV's for technical jobs such as software
developer”, due to “patterns in resumes submitted to the company over a 10-year period” (Lavanchy
2018), which led to the system regarding male dominance as a factor for shortlisting (Lavanchy 2018; Dastin
2018).

This led to the eventual scrapping of the system; a “much-watered down version” version has been
repurposed “...to help with some rudimentary chores, including culling duplicate candidate profiles from
databases” (Dastin 2018).

As seen earlier in Section 1.1, the selection of gendered words used in CVs led to gendered outcomes in a
supposedly neutral algorithm. This is a well-known issue in such classification algorithms (Ferguson 2017;
Boscoe 2019), where implicit or hidden bias is captured in the result of classification or prediction tasks.
This parallels the outcomes raised in Section 2.3, which were biased along ethnic lines. Section 4.0 will
detail design ideas for a prototype algorithm that intends to investigate what could go wrong in such a
system.

3 This case study draws upon media reporting by Dastin (2018) <https://www.reuters.com/article/us-amazon-com-
jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G>
and Lavanchy (2018) <https://phys.org/news/2018-11-amazon-sexist-hiring-algorithm-human.html>

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 11 of 19

3.2. Job Sorting: Translating History into Future Outcomes

The idea of adopting hiring algorithms was initially grounded on the premises that, firstly, the absence of
human intervention gives rise to impartiality; and secondly, that technology enables efficiency and accuracy
in sorting a massive volume of applications with minimum cost and for maximum benefit of the company
(Preuss 2017; Kulkarni & Che 2017). Theoretically, hiring algorithms should be able to create an optimum
amalgam of excellent candidates based on pure meritocracy. This paper, however, argues that the market-
driven algorithms are radically prone to replicate societal biases. In making this case, this subsection will
explain the theoretical logic on the proneness of the algorithms to correlational and statistical bias.

It is, however, important that this paper first elucidate the various tools and different functions of hiring
algorithms. Generally, different tools would perform similar processes in running different tasks. It would
typically source and screen data, from either direct input (including tests, assessments, video interviews
and submitted resumés), or from automated input (usually from Big Data). These data would then be used
to grade and rank candidates’ suitability to the role, based on weighted components such as assessment
metrics, qualifications, test scoring, keywords and other parameters (Roy 2017). However, different
software tools would perform differently as it is designed for different objectives and for different sources.
Although there are various categorisations of automated hiring software, this paper focuses on recruitment
tools that function as Candidate Assessment Software (CAS) and Applicant Tracking Software (ATS). CAS
usually generates personality tests, case studies, logic tests, automated interviews and other assessment
tools and evaluates candidates based on the outcome of the test in comparison to a predetermined set of
criteria. Generally, the tests can be categorised into three broad types: intelligence, personality and mental
or clinical health (Dattner et al. 2019). HireVue is one of the examples of CAS tools. This software assesses
candidates based on virtual interviews, among many others. The algorithmic model would assess
candidates by voice and facial recognition to rank candidates for their suitability and predict their ‘success’
(Raub 2018). Software tools such as this can evaluate the choice of words, for instance, to predict the levels
of empathy, hospitality, and other characteristics, and weigh these in accordance to the company’s culture
(Alsever 2017). A similar idea applies to logic tests, where candidates are asked to perform assessments to
be ranked based on suitability (see similar tools such as ARYA, CEIPA and HackerRank).

ATS, on the other hand, performs resumé parsing, Customer Relationship Management (CRM), background
and social screening, candidates sourcing, and success prediction. It is noteworthy, however, that not all
ATS tools would include all functions. Some can only perform one specific function whilst others may be
able to perform all functions, and a few other ones may include both CAS and ATS operations. One of the
most prominent examples to this is Gild. Gild performs beyond resumé parsing and extends its rendition
from Big Data (O’Neil 2016). It implies that the assessment of candidates’ suitability is not only based on
qualifications or meritocracy, but it also rates applicants based on their ‘social capital’, generated from
their digital activities. An identical approach applies to other tools, especially those involving background
screening from Big Data, such as Ascendify, BambooHR and others. Major companies with a massive
amount of applications are reliant on these tools for their hiring process (O’Neil 2016). In fact, seventy-two
per cent of resumés are never seen by hiring officers at all (O’Neil 2016). However, given the numerous
ways in which these different tools source datasets and perform tasks, the degree of risks may vary.

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 12 of 19

3.2. Algorithmic Hiring: Risks for Women in STEM

This section focuses on the theoretical implications of potential problematic risks that can impact hiring
outcomes due to correlational and statistical biases.

Firstly, the limitation of the datasets is a major factor in the algorithms’ proneness to discrimination as it
builds the scope of benchmarking (Costa et al. 2020). If the algorithms are fed with limited datasets to
assess and produce decisions, the algorithms will transform their benchmark based on this specific set of
data (Costa et al. 2020). For instance, an experiment was done using a facial recognition software to
determine its accuracy when applied to various races. Due to a larger number of inputs from Caucasian
individuals, the software performs higher accuracy when observing Caucasians, and lower accuracy to the
races of minority (Costa et al. 2020). As discussed in prior sections, digital population is key in determining
accurate representation. In the same manner, considering excluded demography within a dataset is equally
significant as those who are represented.

Secondly, as evidenced in the previous chapters, correlational bias remains a major concern in algorithms,
including those designed for hiring management (Kim 2019). One of the prominent reasons for this is the
use of proxy attributes to represent an individual or a parameter. For instance, algorithms make
correlations between ‘creativity’ and the individual’s length of employment within the same job (O’Neil
2016). They also make associations between higher levels of ‘inquisitiveness’ and their likeliness to find
other opportunities. When these correlations are made based on demographic traits, such as
neighbourhood, race or gender, this becomes severely problematic and it could control the change of the
whole corporate culture (O’Neil 2016). Therefore, when these proxies are embedded within the algorithms’
judgement of suitability for employment, it will repeat the same societal bias. In background screening, for
instance, as the algorithms search through the Big Data, the decisions will be more sensitive in making
racial biases, especially in relation to various discriminatory records across the history (O’Neil 2016; Raub
2018). A medical school in the United Kingdom, St. George’s Hospital, has used a hiring program for its
admission decision since the 1980s (Raub 2018). It is found that the algorithms did not introduce new
biases, but captured the pertaining biases as its target variables, and therefore imitated the pertaining
biases in its decisions. Consequently, the software refused approximately 60 applicants annually based on
race and gender.

These premises should question the legitimacy of the parameters of ‘suitability’; which implies that there is
room for algorithmic bias in selecting attributes as candidates’ criteria for suitability assessment. In other
words, if each candidate is to be assessed with the same set of criteria, where will this model of ‘ideal’
candidate come from? How much of the algorithmic judgement would be determined by ‘objective’
measures in comparison to correlational variables? The inputs of these criteria can be severely problematic
(O’Neil 2016). This can be applied in a similar manner both in CAS and ATS tools. Firstly, the defining of an
‘ideal’ employee by algorithms is highly ambiguous and, therefore, cannot be held entirely accountable.
Naturally, when recruiters set certain criteria, they will ideally settle on measurable outcomes, such as GPA
results, longer employment, and so on (Raub 2018). However, it has been noted that subjective decisions
and human biases could still occur; hence, the cases for AI in the first place (Raub 2018). Nevertheless, this
paper argues that the use of AI does not in any way eliminate these biases based on two reasons. Firstly,
algorithms are generally trained to record and memorise past decisions and learn from them (O’Neil 2016).
This implies that the algorithms memorise the patterns of previous decisions and can replicate the patterns
of these decisions. Secondly, in the cases where AI’s judgement becomes central to the hiring decisions, the
objective measures become questionable as the algorithms adapt to the sourced data and preceding
decisions that they have previously collected and memorised, and transformed their calculations against

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 13 of 19

the candidates based on what the algorithms perceive as effective and efficient (Raub 2018). Coming back
to the marketised principles of corporate hiring algorithms, however, this is deemed to produce the most
efficiency of cost, as it predicts the success of a candidate and their length of retention, at the expense of
impartial judgements (Kulkarni & Che 2017).

This should raise several questions on the impact of hiring algorithms to gender equality in relation to
statistical bias. Firstly, if the male population has dominated the formal labour force throughout history,
how would that translate into the algorithms’ benchmark of success? Secondly, if women who are currently
in the workforce now are underrepresented in full-time labour, and occupy most of the casual, part-time
and domestic work, how would this impact the future of other women (Australian Government 2020)?

3.3. Hiring and Protected Attributes

In their research into bias in hiring, Raghavan et al. (2020) identified that the requirements set out by US
law for hiring require a fine balance between disparate impact and disparate treatment (Barocas & Selbst
2016). Due to a longstanding legal tension between the two, techniques that control and reduce disparate
impact can require the use of protected attributes, which can potentially cause disparate treatment (and
not to mention an invasion of privacy).

Based on their research of industry solutions to algorithmic hiring (Sections 2.0 and 3.0), Raghavan et al.
(2020) found that most companies focused on explicit legal requirements, such as the US “4/5 rule”, where
the selection rate for each group must be at least 4/5ths of the dominant group, rather than evaluating the
entire system as a whole. One of the key points that Raghavan et al. (2020) make in their study is that while
it is important for companies to protect their clients by meeting legal requirements, strictly meeting the 4/5
rule for US hiring does not substitute for critical analysis into the potential bias in recruitment assessment.
In particular, it is difficult for companies to minimize the disparate impact to different groups based on
protected attributes that they don’t collect data on, this can be important as it has been shown that strictly
excluding protected data attributes does not imply that the model will be intrinsically fair (Narayanan 2018;
Kusner & Loftus 2020).

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 14 of 19

4.0. Research Directions

4.1. Hypotheses and Methods

One of the deliverables of this project depends on the construction of a prototype classifier -- i.e., a simple
machine learning model -- to rank CVs. As with all models, we will need to train it, based on a set of pre-
defined judgements.

Therefore, a panel at Policy Lab at The University of Melbourne will remotely4 perform a mock hiring
process, given fictitious CVs with attributes reflecting gender. One of the project RAs (co-author Njoto) will
facilitate, amongst others, the generation of simulated CVs and/or synthesis on anonymised real-world CVs
(Refer Executive Summary above).

To train this classifier, we use judgements collected from the panel to form the basis of the training data.
One of the project RAs (co-author McLoughney) will attend the panel sessions in order to elicit user
requirements for the classifier and to come up with core design decisions. To avoid problems arising from
low explainability of complex classifiers such as deep neural networks (Sections 2.1-2.2), classical
techniques will be favoured instead (see e.g., those featured in Section 2.3).

Techniques which may be used include, but are not limited to:

• Semi-automated techniques to convert CVs into a corresponding mathematical representation (e.g.
one-hot encoding)

• Natural language processing (NLP) techniques such as stemming, lemmatising, removal of
stopwords.

• Classification techniques including k-nearest neighbours, decision trees.

• Analysis on keywords captured in the classifier as basis for discrimination.

The outcome would be a report on the gender balance/disparity found in both the human panel and the
classifier approach. This includes an analysis of the similarities and differences between a statistical model,
which may learn discriminatory bias from the data set collected, versus human judgements, which would
reflect the bias encoded based on the values and on the assumptions made by humans.

4 Due to the transition of The University of Melbourne to a ‘Virtual Campus’ model, per
<https://about.unimelb.edu.au/newsroom/news/2020/march/accelerating-our-transition-to-a-virtual-campus>

CIS & Policy Lab, The University of Melbourne | Literature Review: Gender Occupational Sorting Page 15 of 19

4.2. Future Research

The underrepresentation of women in the labour force data, then, should be seriously considered in the
algorithmic data training. This paper, thus, contends that, firstly, if the algorithms are fed with the existing
internal workforce data, algorithms can generate correlational bias between meritocratic principles and
gender, and therefore, would discriminate against women. Secondly, if the algorithms are trained using Big
Data in relation to the submitted resumés, the accountability of the validity of data becomes questionable,
especially when extended to a candidate’s social data. As a hypothetical example, if the algorithms capture
a female candidate as being married, would they, then, assume that the candidate would be more prone to
exiting the workforce because of motherhood? The principle of meritocracy in conjunction to the
correlational bias, then, bears a very significant risk for boxing women out of workforce. Thirdly, as an
implication of the two points above, if algorithms assume that the model of a successful candidate is male,
then the determinants of ‘suitability’ itself need to be questioned and reconsidered.

This project provides an impetus for developing AI systems that are less biased, perhaps by mimicking the
way humans become less biased. Looking forward, an idea for extending the current project is a thorough
survey with HR professionals to understand how they view gender in the hiring process; how gender can
bias their views; and how there has been progress (through e.g. training and diversity awareness initiatives)
in mitigating bias by human evaluators. These can potentially be fed back into the design of future HR AI
systems as well as currently-used CAS and ATS tools to mitigate such biases.

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 16 of 19

References

Administrative Review Council (2004) Automated assistance in administrative decision-making: Report to
the Attorney-General. Attorney-General’s Department, Australian Government. Available at:
https://www.ag.gov.au/LegalSystem/AdministrativeLaw/Pages/practice-guides/automated-
assistance-in-administrative-decision-making.aspx (Accessed: 9 April 2020).

Alsever, J. (2017). Where Does the Algorithm See You in 10 Years?. Fortune, 1 June. Retrieved from
https://fortune.com/2017/05/19/ai-changing-jobs-hiring-recruiting/.

Angwin, J. et al. (2016) Machine Bias, ProPublica. Available at:
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (Accessed:
11 June 2020).

Australian Government (2020). Work and family: Facts and Figures: Report. Available at:
https://aifs.gov.au/facts-and-figures/work-and-family.

Barabas, C. et al. (2020) ‘Studying up: reorienting the study of algorithmic fairness around issues of power’,
in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. New York, NY,
USA: Association for Computing Machinery (FAT* ’20), pp. 167–176.

Barocas, S. and Selbst, A. (2016) ‘Big Data’s Disparate Impact’, Calif. L. Rev. clr, 104(671). doi:
10.15779/Z38BG31.

Bogen, M. (2019). All the ways Hiring Algorithms Can Introduce Bias. Harvard Business Review. 6 May.
Retrieved from https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias.

Boscoe, B. (2019) ‘Creating transparency in algorithmic processes’, Delphi. HeinOnline, 2, p. 12.

Byrne, J. and Cheong, M. (2017) ‘The Algorithm as Human: a cross-disciplinary discussion of anthropology in
an increasingly data-driven world’, in AAS/ASA/ASAANZ 2017 Shifting States Conference. University
of Adelaide.

Cheong, M. and Leins, K. (2020) ‘Who Oversees the Government? Modernising Regulation and Review of
Australian Automated Administrative Decision-making’, in Boughey, J. and Miller, K. (eds)
Government Automation and Public Law Project Workshop (forthcoming). Government Automation
and Public Law Project Workshop (forthcoming).

Chouldechova, A. (2017) ‘Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction
Instruments’, Big data, 5(2), pp. 153–163.

Costa, A., Cheung, C. and Langenkamp, M. (2020). Hiring Fairly in the Age of Algorithms (Research Paper).
Retrieved from https://arxiv.org/abs/2004.07132.

Dalenberg, D. J. (2018). Preventing discrimination in the automated targeting of job advertisements.
Computer Law & Security Review, 34, pp. 615–627. https://doi.org/10.1016/j.clsr.2017.11.009.

Dastin, J. (2018) Amazon scraps secret AI recruiting tool that showed bias against women, Reuters. Reuters.
Available at: https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-
idUSKCN1MK08G (Accessed: 11 June 2020).

Dattner, B., Chamorro-Premuzic, T., Buchband, R. and Schettler, L. (2019). The Legal and Ethical
Implications of Using AI in Hiring. Harvard Business School. 25 April. Retrieved from
https://hbr.org/2019/04/the-legal-and-ethical-implications-of-using-ai-in-hiring.

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 17 of 19

Domingos, P. (2012). A Free Useful Things to Know about Machine Learning. Communications of the ACM,
55(10), pp. 78–87. doi:10.1145/2347736.2347755.

Faragher, J. (2019). Is AI the enemy of diversity?. People Management, 6 June. Retrieved from
https://www.peoplemanagement.co.uk/long-reads/articles/is-ai-enemy-diversity.

Ferguson, A. G. (2017) ‘Policing predictive policing’, Wash. UL Rev. HeinOnline, 94(5). Available at:
https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/walq94§ion=35.

Gaucher, D., Friesen, J. and Kay A. (2011). Evidence That Gendered Wording in Job Advertisements Exists
and Sustains Gender Inequality. Journal of Personality and Social Psychology, 101(1), pp. 109–128.
doi: 10.1037/a0011530.

Hegarty, P. and Buechel, C. (2006). Androcentric Reporting of Gender Differences in APA Journals: 1965–
2004. Review of General Psychology, 10(4), pp. 377–389. doi.org/10.1037/1089-2680.10.4.377.

Kim, P. T. (2019). Big Data and Artificial Intelligence: New Challenges for Workplace Equality. University of
Louisville Law Review, 57, pp. 313–328. Retrieved from https://ssrn.com/abstract=3296521.

Kleinberg, J., Mullainathan, S. and Raghavan, M. (2017) ‘Inherent Trade-Offs in the Fair Determination of
Risk Scores’. Available at: https://arxiv.org/abs/1609.05807 (Accessed: 11 June 2020).

Kolkman, D. (2020) ‘The (in)credibility of algorithmic models to non-experts’, Information, Communication
and Society. Routledge, pp. 1–17.

Kulkarni, S. and Che, X. (2017). Intelligent Software Tools for Recruiting. Journal of International Technology
& Information Management, 28(2), pp. 1–16. Retrieved from
https://scholarworks.lib.csusb.edu/jitim/?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol28
%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages.

Kusner, M. J. and Loftus, J. R. (2020) ‘The long road to fairer algorithms’, Nature, 578(7793), pp. 34–36.

Lambrecht, A. and Tucker, C. (2020). Algorithmic Bias? An Empirical Study of Apparent Gender-Based
Discrimination in the Display of STEM Career Ads. Management Science, pp. 2966–2981.
http://dx.doi.org/10.2139/ssrn.2852260.

Lavanchy, M. (2018) Amazon’s sexist hiring algorithm could still be better than a human, Phys.org. Available
at: https://phys.org/news/2018-11-amazon-sexist-hiring-algorithm-human.html (Accessed: 11 June
2020).

McFarland, D., and McFarland, R. (2015). Big Data and the danger of being precisely inaccurate. Big Data &
Society, Jul–Dec, pp. 1-4. doi: 10.1177/2053951715602495.

Miller, T. (2017) ‘Explanation in Artificial Intelligence: Insights from the Social Sciences’, arXiv [cs.AI].
Available at: http://arxiv.org/abs/1706.07269.

Mittelstadt, B. D. et al. (2016) ‘The ethics of algorithms: Mapping the debate’, Big Data & Society. SAGE
Publications Ltd, 3(2), p. 2053951716679679.

Narayanan, A. (2018) Tutorial: 21 fairness definitions and their politics, YouTube. Available at:
https://www.youtube.com/watch?v=jIXIuYdnyyk (Accessed: 11 June 2020).

O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens
Democracy. United Kingdom: Penguin Random House.

Preuss, A. (2017). Airline pilots: the model for intelligent recruiting?. Recruiter, pp. 12–13. Retrieved from
https://www.recruiter.co.uk/trends/2017/08/airline-pilots-model-intelligent-recruiting.

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 18 of 19

Raghavan, M. et al. (2020) ‘Mitigating bias in algorithmic hiring: evaluating claims and practices’, in
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. New York, NY,
USA: Association for Computing Machinery (FAT* ’20), pp. 469–481.

Raub, M. (2018). Bots, Bias and Big Data: Artificial Intelligence, Algorithmic Bias and Disparate Impact
Liability in Hiring Practices. Arkansas Law Review, 71(2), pp. 529–570. Retrieved from
https://scholarworks.uark.edu/alr/vol71/iss2/7.

Roy, R. (2017). Corporate recruiting opening its doors to AI: the performance opportunity?. Performance
Improvement, 56(10), November–December, pp. 43–44. https://doi.org/10.1002/pfi.21747.

Sczesny, S., Formanowicz, M. and Moser, F. (2016). Can Gender-Fair Language Reduce Gender Stereotyping
and Discrimination?. Frontiers in Psychology, 7(25), pp. 1–11.
https://doi.org/10.3389/fpsyg.2016.00025.

Seely-Gant, K. and Frehill, L. (2015). Exploring Bias and Error in Big Data Research. Journal Washington
Academy of Sciences, 101(3), pp. 29–37.

Stout, J. G. and Dasgupta, N. (2011). When He Doesn’t Mean You: Gender-Exclusive Language as Ostracism.
Personality and Social Psychology Bulletin, 37(6), pp. 757–769. doi: 10.1177/0146167211406434.

Tolan, S. (2018) Fair and Unbiased Algorithmic Decision Making. 2018-10. European Commission, Joint
Research Centre Technical Reports.

Verma, S. and Rubin, J. (2018) ‘Fairness definitions explained’, Proceedings of the International Workshop
on Software Fairness - FairWare ’18. doi: 10.1145/3194770.3194776.

CIS & Policy Lab, The University of Melbourne| Cheong et al. | 26 June 2020 Page 19 of 19

Project Contact

Marc Cheong
<marc.cheong@unimelb.edu.au>

CIS & The Policy Lab, The University of Melbourne | Gender Occupational Sorting

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 1/116

In [255]: import warnings
warnings.filterwarnings('ignore')
from scipy.spatial import Voronoi, voronoi_plot_2d
import itertools
import math
import docx2txt
import nltk
import spacy
import json
from datetime import datetime
import os
import csv
import statistics
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import f_regression
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.model_selection import RepeatedKFold
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from nltk.tokenize import word_tokenize
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
from scipy import stats
from patsy import dmatrices
sns.set() # for plot styling

In [2]: nlp = spacy.load("en_core_web_md")

"en_core_web_md": English multi-task CNN trained on OntoNotes, with GloVe vectors trained on Common
Crawl. Assigns word vectors, POS tags, dependency parse and named entities.

1 Rankings

In this section we compare two different methods of aggregating rankings. We need to aggregate the data to get
an overall ranking because the data points are not statistically indepedent, and this is a requirement for our
machine learning techniques. The response variables with the lower case (e.g. y_da_c) are calculated with the
mean method, and response variables with upper case (e.g. Y_da_c) are calculated with the distance method.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 2/116

Throughout the notebook we will be displaying the rankings data as a list of numbers, where the first number
represents the rank of resume #1, the second number represents the rank of resume #2, and so on.

For example, if the rankings was [2,3,1] then resume #3 is ranked as the 1st (Best) candidate, while resume #1
is ranked 2nd, and resume #2 is ranked 3rd.

In [3]: # Creates an ordering based on the average rank of each resume
def rank_list(mean_list):

 mean_sort = np.sort(mean_list)
 order = []

 for mean in mean_list:

 order.append(np.where(mean_sort == mean)[0][0]+1)

 return order

Based on the current literature, the most optimal method for aggregating multiple rankings is to quantify the
difference between two different rankings by looking at how pairs of candidates are ordered. [1]

This based on the idea that if List 1 ranks Resume A higher than Resume B, and List 2 ranks Resume B higher
than Resume A then there is a difference/distance of one between the two lists, assuming the two lists are the
same in other rankings. E.g. List1 = [1,2,3,4], List 2 = [2,1,3,4] the distance/difference is one.

In [4]: def rank_distance(list1, list2):
 temp_list = list2[:]

 distance = 0

 for rank1 in list1:

 for rank2 in temp_list:

 if rank1 == rank2:
 break

 distance +=1

 temp_list.remove(rank1)

 return distance

Rather than spending lots of time on creating a complex optimisation algorithm, it's much faster to just brute
force calculate all of the permutations of the data, to find the ranked list that is closest to the dataset.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 3/116

In [5]: def brute_rank_aggregation(rankings):

 perms = list(itertools.permutations(['1','2','3','4','5','6','7','8']))

 min_distance = 1000

 for perm in perms:

 distance = 0

 for ranking in rankings:

 distance += rank_distance(perm, ranking)

 if distance < min_distance:

 min_perm = perm
 min_distance = distance

 return min_perm

To optimise the distance calculations, it's more efficient to have the rank lists in the format where the numbers
represent the resume and position represents the rank, rather than having the numbers represent the rank and
the position represent the resume.

In [6]: # This function converts the standard ranking list format into the more optimi
sed format for the distance calculations
def order_to_ranks(order_rank):

 temp = []

 for rank in ['1','2','3','4','5','6','7','8']:

 temp.append(order_rank.index(rank) + 1)

 return temp

The data has been preprocessed and optimised for distance calculations, where the files are labeled as
"orderedrankings..."

1.1 Data Analyst Job

As part of our experiment, half of our participants were given resumes where the gender had been flipped. Two
separate datasets have been organised based on whether the gender was flipped or not. This was under the
hypothesis that the perceived gender could affect the rankings. We also combined the two datasets into a single
dataset to get a more general sense of the data.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 4/116

In [7]: # Original Gender
with open("CV Json Research Data/Job 1 - Data Analyst/rankings.csv") as rankin
gs_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 da_ranks_o = np.asfarray(ranks, float)

Preprocessed data for distance calculations
with open("CV Json Research Data/Job 1 - Data Analyst/ordered_rankings_origina
l.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 da_ordered_ranks_o = list(rankings)

Flipped Gender
with open("CV Json Research Data/Job 1 - Data Analyst/rankings_gender_flip.cs
v") as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 da_ranks_f=np.asfarray(ranks,float)

Preprocessed data for distance calculations
with open("CV Json Research Data/Job 1 - Data Analyst/ordered_rankings_flippe
d.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 da_ordered_ranks_f = list(rankings)

Combined (Original and Flipped Gender data)
with open("CV Json Research Data/Job 1 - Data Analyst/rankings_combined.csv")
as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 da_ranks_c=np.asfarray(ranks,float)

Preprocessed data for distance calculations
with open("CV Json Research Data/Job 1 - Data Analyst/ordered_rankings_combine
d.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 da_ordered_ranks_c = list(rankings)

1.1.1 Original Gender

1.1.1.1 Aggregated ranks based on mean

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 5/116

We calculated the mean ranks for each of the resumes, and used the means to give aggregated ranks for the
resumes. We also calculated the variance for the ranks because we were curious to see whether some resumes
more consistently received the same ranking.

In [8]: y_da_o = rank_list(np.mean(da_ranks_o, axis=0))

print("Means: ", np.mean(da_ranks_o, axis=0))
print("Variance: ", np.var(da_ranks_o, axis=0))
print("Aggregated ranks based on mean values: ", y_da_o)

Just as a reminder, the first number in the list is the ranking of resume #1.

E.g. based on these results, resume #1 has an aggregated rank of 8th.

1.1.1.2 Ranks calculated from ordered pair distance

Using the optimal ordered pair distance method, we calculate the aggregated ranks for the data analyst original
gender dataset.

In [9]: da_original_ranks = brute_rank_aggregation(da_ordered_ranks_o)
Y_da_o = order_to_ranks(da_original_ranks)

print("Aggregated ranks based on ordered pair distance: ", Y_da_o)

Comparing the results of the two different methods, the top and bottom candidates are consistent while the
remaining candidates are shuffled in their respective top and bottom halves.

1.1.2 Flipped Genders

Repeating the same process on the flipped gender data, we receive similar results to the original gender data
except that candidates #3 and #7 have swapped ranks.

1.1.2.1 Aggregated ranks based on mean

Means: [7.0952381 3.04761905 4.23809524 5.57142857 4.19047619 3.76190476
4. 4.0952381]
Variance: [2.46712018 5.28344671 1.99092971 3.4829932 5.29705215 3.80045351
4. 4.56235828]
Aggregated ranks based on mean values: [8, 1, 6, 7, 5, 2, 3, 4]

Aggregated ranks based on ordered pair distance: [8, 1, 5, 6, 7, 4, 2, 3]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 6/116

In [10]: y_da_f = rank_list(np.mean(da_ranks_f, axis=0))

print("Means: ", np.mean(da_ranks_f, axis=0))
print("Variance: ", np.var(da_ranks_f, axis=0))
print("Aggregated ranks based on mean values: ", y_da_f)

1.1.2.2 Ranks calculated from ordered pair distance

In [11]: da_flipped_ranks = brute_rank_aggregation(da_ordered_ranks_f)
Y_da_f = order_to_ranks(da_flipped_ranks)

print("Aggregated ranks based on ordered pair distance: ", Y_da_f)

1.1.3 Combined Results

1.1.3.1 Aggregated ranks based on mean

In [12]: y_da_c = rank_list(np.mean(da_ranks_c,axis = 0))

print("Means: ",np.mean(da_ranks_c,axis = 0))
print("Variance: ",np.var(da_ranks_c,axis = 0))
print("Aggregated ranks based on mean values: ",y_da_c)

1.1.3.2 Ranks calculated from ordered pair distance

In [13]: da_combined_ranks = brute_rank_aggregation(da_ordered_ranks_c)
Y_da_c = order_to_ranks(da_combined_ranks)

print("Aggregated ranks based on ordered pair distance: ", Y_da_f)
print(Y_da_c)

Means: [7.05555556 2.11111111 3.72222222 5.77777778 4.27777778 3.83333333
4.77777778 4.16666667]
Variance: [2.7191358 3.20987654 3.75617284 2.17283951 4.3117284 3.02777778
3.50617284 3.58333333]
Aggregated ranks based on mean values: [8, 1, 2, 7, 5, 3, 6, 4]

Aggregated ranks based on ordered pair distance: [8, 1, 2, 7, 3, 5, 6, 4]

Means: [7.07692308 2.61538462 4. 5.66666667 4.23076923 3.79487179
4.35897436 4.12820513]
Variance: [2.58382643 4.5443787 2.87179487 2.88888889 4.84418146 3.44510191
3.92241946 4.11176857]
Aggregated ranks based on mean values: [8, 1, 3, 7, 5, 2, 6, 4]

Aggregated ranks based on ordered pair distance: [8, 1, 2, 7, 3, 5, 6, 4]
[8, 1, 3, 7, 6, 4, 5, 2]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 7/116

1.2 Finance Officer

In [14]: # Original Gender
with open("CV Json Research Data/Job 2 - Finance Officer/rankings.csv") as ran
kings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 fo_ranks_o=np.asfarray(ranks,float)

Preprocessed data for distance calculations
with open("CV Json Research Data/Job 2 - Finance Officer/ordered_rankings_orig
inal.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 fo_ordered_ranks_o = list(rankings)

Flipped Gender
with open("CV Json Research Data/Job 2 - Finance Officer/rankings_gender_flip.
csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 fo_ranks_f=np.asfarray(ranks,float)

Preprocessed data for distance calculations
with open("CV Json Research Data/Job 2 - Finance Officer/ordered_rankings_flip
ped.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 fo_ordered_ranks_f = list(rankings)

Combined (Original and Flipped Gender data)
with open("CV Json Research Data/Job 2 - Finance Officer/rankings_combined.cs
v") as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 fo_ranks_c=np.asfarray(ranks,float)

Preprocessed data for distance calculations
with open("CV Json Research Data/Job 2 - Finance Officer/ordered_rankings_comb
ined.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 fo_ordered_ranks_c = list(rankings)

1.2.1 Original Gender

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 8/116

In [15]: y_fo_o = rank_list(np.mean(fo_ranks_o,axis = 0))

print("Means: ",np.mean(fo_ranks_o,axis = 0))
print("Variance: ",np.var(fo_ranks_o,axis = 0))
print("Aggregated ranks based on mean values: ",y_fo_o)

In [16]: fo_original_ranks = brute_rank_aggregation(fo_ordered_ranks_o)
Y_fo_o = order_to_ranks(fo_original_ranks)

print("Aggregated ranks based on ordered pair distance: ", Y_fo_o)

1.2.2 Flipped Gender

In [17]: y_fo_f = rank_list(np.mean(fo_ranks_f,axis = 0))

print("Means: ",np.mean(fo_ranks_f,axis = 0))
print("Variance: ",np.var(fo_ranks_f,axis = 0))
print("Aggregated ranks based on mean values: ",y_fo_f)

In [18]: fo_flipped_ranks = brute_rank_aggregation(fo_ordered_ranks_f)
Y_fo_f = order_to_ranks(fo_flipped_ranks)

print("Aggregated ranks based on ordered pair distance: ", Y_fo_f)

1.2.3 Combined Results

Means: [3.22727273 4.54545455 6.95454545 5.18181818 3.77272727 4.22727273
4.40909091 3.68181818]
Variance: [4.81198347 6.0661157 1.86157025 5.14876033 3.90289256 3.35743802
4.42355372 3.03512397]
Aggregated ranks based on mean values: [1, 6, 8, 7, 3, 4, 5, 2]

Aggregated ranks based on ordered pair distance: [1, 5, 8, 7, 4, 6, 3, 2]

Means: [3.1875 4.625 6.875 5.5 3.375 4.25 4.6875 3.5]
Variance: [3.90234375 4.984375 2.859375 6.375 3.609375 3.1875
2.96484375 3.375]
Aggregated ranks based on mean values: [1, 5, 8, 7, 2, 4, 6, 3]

Aggregated ranks based on ordered pair distance: [2, 6, 8, 5, 1, 7, 4, 3]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 9/116

In [19]: y_fo_c = rank_list(np.mean(fo_ranks_c,axis = 0))

print("Means: ",np.mean(fo_ranks_c,axis = 0))
print("Variance: ",np.var(fo_ranks_c,axis = 0))
print("Aggregated ranks based on mean values: ",y_fo_c)

In [20]: fo_combined_ranks = brute_rank_aggregation(fo_ordered_ranks_c)
Y_fo_c = order_to_ranks(fo_combined_ranks)

print("Aggregated ranks based on ordered pair distance: ", Y_fo_c)

1.3 Recruitment Officer

Means: [3.21052632 4.57894737 6.92105263 5.31578947 3.60526316 4.23684211
4.52631579 3.60526316]
Variance: [4.42936288 5.61218837 2.283241 5.68975069 3.81786704 3.28601108
3.82825485 3.18628809]
Aggregated ranks based on mean values: [1, 6, 8, 7, 2, 4, 5, 2]

Aggregated ranks based on ordered pair distance: [2, 5, 8, 7, 1, 6, 4, 3]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 10/116

In [21]: # Original Gender
with open("CV Json Research Data/Job 3 - Recruitment Officer/rankings.csv") as
rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ro_ranks_o=np.asfarray(ranks,float)

Preprocessed data for distance calculations
with open("CV Json Research Data/Job 3 - Recruitment Officer/ordered_rankings_
original.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 ro_ordered_ranks_o = list(rankings)

Flipped Gender
with open("CV Json Research Data/Job 3 - Recruitment Officer/rankings_gender_f
lip.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ro_ranks_f=np.asfarray(ranks,float)

Preprocessed data for distance calculations
with open("CV Json Research Data/Job 3 - Recruitment Officer/ordered_rankings_
flipped.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 ro_ordered_ranks_f = list(rankings)

Combined (Original and Flipped Gender data)
with open("CV Json Research Data/Job 3 - Recruitment Officer/rankings_combine
d.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ro_ranks_c=np.asfarray(ranks,float)

Preprocessed data for distance calculations
with open("CV Json Research Data/Job 3 - Recruitment Officer/ordered_rankings_
combined.csv") as rankings_file:
 rankings = csv.reader(rankings_file)
 ro_ordered_ranks_c = list(rankings)

1.3.1 Original Gender

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 11/116

In [22]: y_ro_o = rank_list(np.mean(ro_ranks_o,axis = 0))

print("Means: ",np.mean(ro_ranks_o,axis = 0))
print("Rank Variance: ",np.var(ro_ranks_o,axis = 0))
print("Aggregated ranks based on mean values: ",y_ro_o)

In [23]: ro_original_ranks = brute_rank_aggregation(ro_ordered_ranks_o)
Y_ro_o = order_to_ranks(ro_original_ranks)

print("Aggregated ranks based on ordered pair distance: ", Y_ro_o)

1.3.2 Flipped Gender

In [24]: y_ro_f = rank_list(np.mean(ro_ranks_f,axis = 0))

print("Means: ",np.mean(ro_ranks_f,axis = 0))
print("Variance: ",np.var(ro_ranks_f,axis = 0))
print("Aggregated ranks based on mean values: ",y_ro_f)

In [25]: ro_flipped_ranks = brute_rank_aggregation(ro_ordered_ranks_f)
Y_ro_f = order_to_ranks(ro_flipped_ranks)

print("Aggregated ranks based on ordered pair distance: ", Y_ro_f)

1.3.3 Combined Results

In [26]: y_ro_c = rank_list(np.mean(ro_ranks_c,axis = 0))

print("Means: ",np.mean(ro_ranks_c,axis = 0))
print("Variance: ",np.var(ro_ranks_c,axis = 0))
print("Aggregated ranks based on mean values: ",y_ro_c)

Means: [5.45 5.65 4.25 6.9 2.8 6.05 2.35 2.55]
Rank Variance: [4.0475 3.5275 2.0875 1.69 2.06 1.8475 3.5275 1.4475]
Aggregated ranks based on mean values: [5, 6, 4, 8, 3, 7, 1, 2]

Aggregated ranks based on ordered pair distance: [5, 7, 4, 8, 2, 6, 1, 3]

Means: [5.47058824 5.70588235 4.29411765 5.70588235 3.82352941 5.17647059
3.05882353 2.76470588]
Variance: [3.5432526 3.03114187 2.79584775 4.79584775 3.55709343 7.67474048
4.05536332 2.65051903]
Aggregated ranks based on mean values: [6, 7, 4, 7, 3, 5, 2, 1]

Aggregated ranks based on ordered pair distance: [8, 7, 3, 5, 4, 6, 2, 1]

Means: [5.45945946 5.67567568 4.27027027 6.35135135 3.27027027 5.64864865
2.67567568 2.64864865]
Variance: [3.81592403 3.30021914 2.41344047 3.47114682 3.00803506 4.71439007
3.89481373 2.01168736]
Aggregated ranks based on mean values: [5, 7, 4, 8, 3, 6, 2, 1]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 12/116

In [27]: ro_combined_ranks = brute_rank_aggregation(ro_ordered_ranks_c)
Y_ro_c = order_to_ranks(ro_combined_ranks)

print("Aggregated ranks based on ordered pair distance: ", Y_ro_c)

2 Feature functions

2.1 Requirement Keyword match

Uses the word tokenizer from NLTK to create two sets of tokens, one for the CV and one for the requirements in
the job description. Tokens are typically the individual words from a sentence, with the punctuation removed. The
Requirement Keyword match feature returns the ratio of matched tokens against the number of requirement
tokens.

Sets(unique words) are used for the ratio calculation because we want to get a naive sense of how many
requirements the candidate meets rather than how well the requirements are met.

Aggregated ranks based on ordered pair distance: [7, 6, 4, 8, 2, 5, 1, 3]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 13/116

In [28]: def requirement_keyword_match(cv, requirements_path):
 cv_text = []
 all_stopwords = nlp.Defaults.stop_words

 # collect all of the words from the resume's experience section
 for experience in cv['experience']:
 for responsibility in experience['responsibilities']:
 tokens = word_tokenize(responsibility)

 for token in tokens:
 if not token in all_stopwords:
 cv_text.append(token)

 # collect all of the words from the resume's general skills
 for skill in cv['skills']['general']:
 tokens = word_tokenize(skill)

 for token in tokens:
 if not token in all_stopwords:
 cv_text.append(token)

 # collect all of the words from the resume's technical section
 for skill in cv['skills']['technical']:
 tokens = word_tokenize(skill)

 for token in tokens:
 if not token in all_stopwords:
 cv_text.append(token)

 require_tokens = []
 # collect all of the words from the job's requirements
 with open(requirements_path) as requirements_file:
 requirements = csv.reader(requirements_file)

 for requirement in requirements:

 tokens = word_tokenize(requirement[0])

 for token in tokens:
 if not token in all_stopwords:
 require_tokens.append(token)

 # filter out punctuation
 require_tokens_filtered = [word for word in require_tokens if not word in
[',','(',')','/','.','&']]
 cv_text_filtered = [word for word in cv_text if not word in [',','(',')',
'/','.','&']]

 requirement_keyword_match = set(require_tokens_filtered).intersection(cv_t
ext_filtered)

 return len(requirement_keyword_match)/len(require_tokens_filtered)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 14/116

2.2 Relevant Experience Feature

2.2.1 Word Vector Visualisation

t-distributed stochastic neighbor embedding/vector

In []: embeddings = []
key_words = ['purple','white','red','black','accountant','officer','developer'
,'car','bicycle','truck','van']

for word in key_words:
 embeddings.append(nlp.vocab[word].vector)

tsne = TSNE(n_components=2, random_state=0, perplexity=5)
Y = tsne.fit_transform(embeddings)
plt.scatter(Y[:, 0], Y[:, 1])
for i, txt in enumerate(key_words):
 plt.annotate(txt, (Y[i,0], Y[i,1]),textcoords="offset points",xytext=(5,5
))

The shortest amount of time for a previous job on a resume is a few months. To make the granularity consistent,
we convert all job lengths into units of months.

In [30]: # expected format of inputs is datetime
def months_length(start_datetime, end_datetime):

 return (end_datetime.year - start_datetime.year) * 12 + end_datetime.month
- start_datetime.month

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 15/116

The doc similarity feature converts the resume and the job description into word vectors, and then compares how
similar the word vectors are. As a preprocessing step, the common/stop words (e.g 'a','and','the') and numbers
are removed because they provide no information on how similar two sentences are. The spaCy library was
used to calculate the word vectors.

Through the testing of the features, we found that the lowest similarity rating for jobs that were completely
irrelevant to the Unibank role was ~75%, while the best matches were 90-95% rating. The small difference
between the lowest and highest similarity is due to the poor performance word vectors have when comparing
large amounts of words. Despite this flaw, we used word vectors because the complexity of the technique is low
and we have a clear understanding of how bias can exist in the method.

Because the difference between the lowest and highest similarity rating is relatively small, this causes the issue
where for example 5 years experience in a irrelevant job is valued highed than two years experience in an ideal
role. To address this issue we included a power variable, which is used to increase the difference between the
best and worst match by taking the power of the similarity based on the input variable. E.g. if the 'power_weight'
is set to 20, then the worst match would equal 0.75^20=0.003 and the best match would equal 0.9^20=0.122.

In [31]: def doc_similarity(doc1, doc2, power_weight):
 all_stopwords = nlp.Defaults.stop_words

 doc1_tokens = []

 tokens = word_tokenize(doc1)

 for token in tokens:
 if (not token in all_stopwords) and (token.isalpha()) and (str(token).
lower() not in doc1_tokens):
 doc1_tokens.append(str(token).lower())

 doc1_nlp = nlp(' '.join(doc1_tokens))

 doc2_tokens = []

 tokens = word_tokenize(doc2)

 for token in tokens:
 if (not token in all_stopwords) and (token.isalpha()) and (str(token).
lower() not in doc2_tokens):
 doc2_tokens.append(str(token).lower())

 doc2_nlp = nlp(' '.join(doc2_tokens))

 return (doc1_nlp.similarity(doc2_nlp))**power_weight

Calculates the number of months the candiate spent in each previous job, and the weights the total number of
months based on document similarity via word vectorization with spaCy.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 16/116

In [32]: def relevant_experience(cv, responsibilities_path):

 # combines the job responsibilities into a single string for the word vect
or
 require_string = ""
 with open(responsibilities_path) as responsibilities_file:
 responsibilities = csv.reader(responsibilities_file)

 for responsibility in responsibilities:

 require_string += responsibility[0] +'. '

 total = 0
 for job in cv['experience']:

 start_datetime = datetime.strptime(job['start-date'], '%B %Y')

 if job['end-date'] == 'Present':

 end_datetime = datetime.now()

 else:

 end_datetime = datetime.strptime(job['end-date'], '%B %Y')

 job_length = months_length(start_datetime, end_datetime)

 relevance = doc_similarity(' '.join(job['responsibilities']),require_s
tring,20)

 total += job_length*relevance

 return total

2.3 Education Requirements

This feature simply checks whether the candidate has a degree that meets the role requirements, and returns
true if they do. As part of the preprocessing, we have set the degree level, and we had to hard-code relevant
fields for the roles to reduce complexity.

In [33]: def education_requirement(fields, levels, cv):
 for degree in cv['education']:
 if degree['degree-level'].lower() in levels:
 for field in fields:
 if field in degree['field'].lower():
 return 1
 return 0

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 17/116

3 Feature Computation

We stored the genders of the candidates in CSV files, so we could easily load and reference them when
checking gender bias.

In [34]: with open("CV Json Research Data/Job 1 - Data Analyst/gender.csv") as gender_f
ile:
 da_gender = list(csv.reader(gender_file))

with open("CV Json Research Data/Job 2 - Finance Officer/gender.csv") as gende
r_file:
 fo_gender = list(csv.reader(gender_file))

with open("CV Json Research Data/Job 3 - Recruitment Officer/gender.csv") as g
ender_file:
 ro_gender = list(csv.reader(gender_file))

The resume data is loaded from the JSON files and passed through each of the feature functions to calculate the
inputs for the models. The Data Analyst does not have the education feature as it was not a requirement in the
job description. The gender feature is labelled as feature #3 because it was developed after the education
feature.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 18/116

In [228]: X_0_da = [] # Relevant Experience Feature
X_1_da = [] # Requirement Keyword Match Feature
X_3_da = [] # Gender Feature

files = os.listdir("CV Json Research Data/Job 1 - Data Analyst/")

for file in files:

 if file.split('.')[-1] == "json":

 path = "CV Json Research Data/Job 1 - Data Analyst/" + file

 with open(path, encoding="utf8") as json_file:
 cv = json.load(json_file)

 X_0_da.append(relevant_experience(cv, "CV Json Research Data/Job 1 - D
ata Analyst/job_requirements.csv"))
 X_1_da.append(requirement_keyword_match(cv, "CV Json Research Data/Job
1 - Data Analyst/job_requirements.csv"))

for gender in da_gender[0]:
 if gender == 'Female':
 X_3_da.append(0)
 else:
 X_3_da.append(1)

X_da = np.column_stack((X_0_da,X_1_da,X_3_da))

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 19/116

In [229]: X_0_fo = [] # Relevant Experience Feature
X_1_fo = [] # Requirement Keyword Match Feature
X_2_fo = [] # Education Feature
X_3_fo = [] # Gender Feature

required_fields = ['finance','accounting','accountancy']
required_levels = ['bachelor','master','graduate conversion course']
files = os.listdir("CV Json Research Data/Job 2 - Finance Officer/")

for file in files:

 if file.split('.')[-1] == "json":

 path = "CV Json Research Data/Job 2 - Finance Officer/" + file

 with open(path, encoding="utf8") as json_file:
 cv = json.load(json_file)

 X_0_fo.append(relevant_experience(cv, "CV Json Research Data/Job 2 - F
inance Officer/job_requirements.csv"))
 X_1_fo.append(requirement_keyword_match(cv, "CV Json Research Data/Job
2 - Finance Officer/job_requirements.csv"))
 X_2_fo.append(education_requirement(required_fields,required_levels, c
v))

for gender in fo_gender[0]:
 if gender == 'Female':
 X_3_fo.append(0)
 else:
 X_3_fo.append(1)

X_fo = np.column_stack((X_0_fo,X_1_fo,X_2_fo,X_3_fo))

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 20/116

In [230]: X_0_ro = [] # Relevant Experience Feature
X_1_ro = [] # Requirement Keyword Match Feature
X_2_ro = [] # Education Feature
X_3_ro = [] # Gender Feature

required_fields = ['human resource']
required_levels = ['bachelor','master','graduate conversion course','diploma',
'certificate iv','post graduate diploma']
files = os.listdir("CV Json Research Data/Job 3 - Recruitment Officer/")

for file in files:

 if file.split('.')[-1] == "json":

 path = "CV Json Research Data/Job 3 - Recruitment Officer/" + file

 with open(path, encoding="utf8") as json_file:
 cv = json.load(json_file)

 X_0_ro.append(relevant_experience(cv, "CV Json Research Data/Job 3 - R
ecruitment Officer/job_requirements.csv"))
 X_1_ro.append(requirement_keyword_match(cv,"CV Json Research Data/Job
3 - Recruitment Officer/job_requirements.csv"))
 X_2_ro.append(education_requirement(required_fields,required_levels, c
v))

for gender in ro_gender[0]:
 if gender == 'Female':
 X_3_ro.append(0)
 else:
 X_3_ro.append(1)

X_ro = np.column_stack((X_0_ro,X_1_ro,X_2_ro,X_3_ro))

We've combined the three datasets from the different roles to see whether there is a more general relationship
between the features and the rankings.

In [232]: X_0 = X_0_da + X_0_fo + X_0_ro
X_1 = X_1_da + X_1_fo + X_1_ro
X = np.column_stack((X_0,X_1))
y = Y_da_c + Y_fo_c + Y_ro_c

3.1 Feature Z-scores

We tested the idea of using relative feature values, to see whether this improves the models. I.e. if one of the
candidates have much less experience compared to the average experience of all of the the candidates then you
would expect the candidate to be ranked lower. But we found that this z-score version of the features did not
improve the model.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 21/116

In [225]: scaler = StandardScaler()
X_0_da_zscore = scaler.fit_transform(np.array(X_0_da).reshape(-1,1))
X_1_da_zscore = scaler.fit_transform(np.array(X_1_da).reshape(-1,1))
X_da_zscore = np.column_stack((X_0_da_zscore,X_1_da_zscore,X_3_da))

In [226]: scaler = StandardScaler()
X_0_fo_zscore = scaler.fit_transform(np.array(X_0_fo).reshape(-1,1))
X_1_fo_zscore = scaler.fit_transform(np.array(X_1_fo).reshape(-1,1))
X_fo_zscore = np.column_stack((X_0_fo_zscore,X_1_fo_zscore,X_2_fo,X_3_fo))

In [227]: scaler = StandardScaler()
X_0_ro_zscore = scaler.fit_transform(np.array(X_0_ro).reshape(-1,1))
X_1_ro_zscore = scaler.fit_transform(np.array(X_1_ro).reshape(-1,1))
X_ro_zscore = np.column_stack((X_0_ro_zscore,X_1_ro_zscore,X_2_ro,X_3_ro))

4 Feature Analysis

4.1 All jobs Analysis

The idea behind this initial analysis was to check whether there was any underlying pattern/relation between the
features and the ranks, regardless of the type of job being applied for. I.e. Is the value of meeting requirements
and having experience universial across all jobs?

The numbers on the data points in Figure 4.1 represent the rank the resume received.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 22/116

In [233]: # hard-coded colours to represent the genders of the candidiates
da_colours = ['pink', 'lightblue', 'lightblue','pink','lightblue','lightblue',
'pink','pink']
fo_colours = ['lightblue', 'pink', 'pink','pink','lightblue','lightblue','pin
k','lightblue']
ro_colours = ['pink', 'lightblue', 'lightblue','lightblue','pink','pink','pin
k','lightblue']

colours = da_colours + fo_colours + ro_colours
plt.scatter(X_0, X_1, c=colours, s=50, cmap='viridis')
plt.xlabel("Weighted Relevant Experience")
plt.ylabel("Requirement Keyword Match")
plt.title("Figure 4.1 - All Job feature analysis")

for i, txt in enumerate(y):
 plt.annotate(txt, (X_0[i], X_1[i]))

In [235]: reg = LinearRegression().fit(X, y)
print("Regression R^2 score:",reg.score(X,y))

As we can see from Figure 4.1, there is no clear pattern between the features and ranks of the resumes. This is
confirmed the the low R^2 value from our regression model. This suggests the experience and met requirements
of the candidates are valued differently across the different jobs; that the differences between fields is too great
to develop a general model.

4.2 Gender Distributions of Relevant Experience

To check whether there is any significant bias towards either of the genders for our computed features, we
plotted distribution plots as a high level test. Some of the distributions have unusual shapes due to the size of the
dataset.

Regression R^2 score: 0.18658346115655233

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 23/116

In [241]: X_0_female = []
X_0_male = []

go through each feature vector for the roles and split them based on gender
for x_0, gender in zip(X_0_da,da_gender[0]):
 if gender == "Male":
 X_0_male.append(x_0)
 else:
 X_0_female.append(x_0)

print("Female Experience",X_0_female)
print("Male Experience",X_0_male)

print("Average Female Experience",np.mean(X_0_female, axis=0))
print("Average Male Experience",np.mean(X_0_male, axis=0))

sns.color_palette("Set2")

sns.distplot(X_0_female, hist = False,
 label = "Female", color="royalblue",kde_kws={'linestyle':'--'
}).set(xlim=(0))

sns.distplot(X_0_male, hist = False,
 label = "Male", color="royalblue").set(xlim=(0))
plt.title("Figure 4.2.1: Gender Distribution of Relevant Experience Feature (D
ata Analyst)")
plt.xlabel("Relevant Experience (Weighted Months)")
plt.ylabel("Normalised Distribution")

Female Experience [1.0629323104052746, 27.270870156624024, 57.31516723095554
5, 43.610573199880065]
Male Experience [87.2138513474456, 31.23897839674321, 43.11847853305852, 31.8
7005233462274]
Average Female Experience 32.31488572446622
Average Male Experience 48.360340152967524

Out[241]: Text(0, 0.5, 'Normalised Distribution')

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 24/116

In [243]: X_0_female = []
X_0_male = []

go through each feature vector for the roles and split them based on gender
for x_0, gender in zip(X_0_fo,fo_gender[0]):
 if gender == "Male":
 X_0_male.append(x_0)
 else:
 X_0_female.append(x_0)

print("Female Experience",X_0_female)
print("Male Experience",X_0_male)

print("Average Female Experience",np.mean(X_0_female, axis=0))
print("Average Male Experience",np.mean(X_0_male, axis=0))

sns.distplot(X_0_female, hist = False,
 label = "Female",color="royalblue",kde_kws={'linestyle':'--'
}).set(xlim=(0))

sns.distplot(X_0_male, hist = False,
 label = "Male",color="royalblue").set(xlim=(0))

plt.title("Figure 4.2.2: Gender Distribution of Relevant Experience Feature (F
inance Officer)")
plt.xlabel("Relevant Experience (Weighted Months)")
plt.ylabel("Normalised Distribution")

Female Experience [21.383032371633487, 1.4829252248607538, 3.842338536636174,
23.81311702962811]
Male Experience [4.844861364879119, 7.204622754851076, 4.198750909885769, 10.
973704127688382]
Average Female Experience 12.63035329068963
Average Male Experience 6.805484789326086

Out[243]: Text(0, 0.5, 'Normalised Distribution')

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 25/116

In [245]: X_0_female = []
X_0_male = []

go through each feature vector for the roles and split them based on gender
for x_0, gender in zip(X_0_ro,ro_gender[0]):
 if gender == "Male":
 X_0_male.append(x_0)
 else:
 X_0_female.append(x_0)

print(X_0_female)
print(X_0_male)

print("Average Female Experience",np.mean(X_0_female, axis=0))
print("Average Male Experience",np.mean(X_0_male, axis=0))

sns.distplot(X_0_female, hist = False,
 label = "Female",color="royalblue",kde_kws={'linestyle':'--'
}).set(xlim=(0))

sns.distplot(X_0_male, hist = False,
 label = "Male",color="royalblue").set(xlim=(0))
plt.title("Figure 4.2.3: Gender Distribution of Relevant Experience Feature (R
ecruitment Officer)")
plt.xlabel("Relevant Experience (Weighted Months)")
plt.ylabel("Normalised Distribution")

[12.509130667169947, 5.655672128623767, 1.392999145238279, 12.20264435468282
8]
[10.608242768666603, 17.66933189635241, 21.04882082518529, 14.83590493428790
1]
Average Female Experience 7.9401115739287045
Average Male Experience 16.04057510612305

Out[245]: Text(0, 0.5, 'Normalised Distribution')

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 26/116

In [246]: X_0_female = []
X_0_male = []

go through each feature vector for the roles and split them based on gender
for x_0, gender in zip(X_0_da,da_gender[0]):
 if gender == "Male":
 X_0_male.append(x_0)
 else:
 X_0_female.append(x_0)

for x_0, gender in zip(X_0_fo,fo_gender[0]):
 if gender == "Male":
 X_0_male.append(x_0)
 else:
 X_0_female.append(x_0)

for x_0, gender in zip(X_0_ro,ro_gender[0]):
 if gender == "Male":
 X_0_male.append(x_0)
 else:
 X_0_female.append(x_0)

print("Female Experience",X_0_female)
print("Male Experience",X_0_male)

print("Average Female Experience",np.mean(X_0_female, axis=0))
print("Average Male Experience",np.mean(X_0_male, axis=0))

sns.distplot(X_0_male, hist = False,
 label = "Male",color="royalblue").set(xlim=(0))
sns.distplot(X_0_female, hist = False,
 label = "Female", color="royalblue",kde_kws={'linestyle':'--'
}).set(xlim=(0))

plt.title("Figure 4.2.4: Gender Distribution of Relevant Experience Feature (A
ll roles)")
plt.xlabel("Relevant Experience (Weighted Months)")
plt.ylabel("Normalised Distribution")

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 27/116

Based on Figure 4.2.4, we can see the male candidates have a slightly higher average level of experience
compared to the female candidates, and one of the male candidates is an outlier.

4.3 Gender Distribution of Keyword Match

We repeat the same process as the previous section to check for significant bias in the keywords feature. Once
again, some of the distributions have unusual shapes due to the size of the dataset.

Female Experience [1.0629323104052746, 27.270870156624024, 57.31516723095554
5, 43.610573199880065, 21.383032371633487, 1.4829252248607538, 3.842338536636
174, 23.81311702962811, 12.509130667169947, 5.655672128623767, 1.392999145238
279, 12.202644354682828]
Male Experience [87.2138513474456, 31.23897839674321, 43.11847853305852, 31.8
7005233462274, 4.844861364879119, 7.204622754851076, 4.198750909885769, 10.97
3704127688382, 10.608242768666603, 17.66933189635241, 21.04882082518529, 14.8
35904934287901]
Average Female Experience 17.628450196361523
Average Male Experience 23.73546668280555

Out[246]: Text(0, 0.5, 'Normalised Distribution')

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 28/116

In [247]: X_1_female = []
X_1_male = []

go through each feature vector for the roles and split them based on gender
for x_1, gender in zip(X_1_da,da_gender[0]):
 if gender == "Male":
 X_1_male.append(x_1)
 else:
 X_1_female.append(x_1)

print(X_1_female)
print(X_1_male)

print("Average Female Keywords",np.mean(X_1_female, axis=0))
print("Average Male Keywords",np.mean(X_1_male, axis=0))

sns.distplot(X_1_female, hist = False,bins=50,
 label = "Female",color="royalblue",kde_kws={'linestyle':'--'
}).set(xlim=(0))

sns.distplot(X_1_male, hist = False, bins=50,
 label = "Male",color="royalblue").set(xlim=(0))
plt.title("Figure 4.3.1: Gender Distribution of Requirement Keyword Feature (D
ata Analyst)")
plt.xlabel("Requirement Keyword Match")
plt.ylabel("Normalised Distribution")

[0.1511627906976744, 0.18604651162790697, 0.29069767441860467, 0.220930232558
13954]
[0.32558139534883723, 0.19767441860465115, 0.11627906976744186, 0.22093023255
813954]
Average Female Keywords 0.21220930232558138
Average Male Keywords 0.21511627906976744

Out[247]: Text(0, 0.5, 'Normalised Distribution')

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 29/116

In [248]: X_1_female = []
X_1_male = []

go through each feature vector for the roles and split them based on gender
for x_1, gender in zip(X_1_fo,fo_gender[0]):
 if gender == "Male":
 X_1_male.append(x_1)
 else:
 X_1_female.append(x_1)

print(X_1_female)
print(X_1_male)

print("Average Female Keywords",np.mean(X_1_female, axis=0))
print("Average Male Keywords",np.mean(X_1_male, axis=0))

sns.distplot(X_1_female, hist = False,bins=50,
 label = "Female",color="royalblue",kde_kws={'linestyle':'--'
}).set(xlim=(0))

sns.distplot(X_1_male, hist = False, bins=50,
 label = "Male",color="royalblue").set(xlim=(0))
plt.title("Figure 4.3.2: Gender Distribution of Requirement Keyword Feature (F
inance Officer)")
plt.xlabel("Requirement Keyword Match")
plt.ylabel("Normalised Distribution")

[0.10714285714285714, 0.03571428571428571, 0.08928571428571429, 0.05357142857
142857]
[0.07142857142857142, 0.10714285714285714, 0.05357142857142857, 0.08928571428
571429]
Average Female Keywords 0.07142857142857142
Average Male Keywords 0.08035714285714285

Out[248]: Text(0, 0.5, 'Normalised Distribution')

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 30/116

In [249]: X_1_female = []
X_1_male = []

go through each feature vector for the roles and split them based on gender
for x_1, gender in zip(X_1_ro,ro_gender[0]):
 if gender == "Male":
 X_1_male.append(x_1)
 else:
 X_1_female.append(x_1)

print(X_1_female)
print(X_1_male)

print("Average Female Keywords",np.mean(X_1_female, axis=0))
print("Average Male Keywords",np.mean(X_1_male, axis=0))

sns.distplot(X_1_female, hist = False,bins=50,
 label = "Female",color="royalblue",kde_kws={'linestyle':'--'
}).set(xlim=(0))

sns.distplot(X_1_male, hist = False, bins=50,
 label = "Male",color="royalblue").set(xlim=(0))
plt.title("Figure 4.3.3: Gender Distribution of Requirement Keyword Feature (R
ecruitment Officer)")
plt.xlabel("Requirement Keyword Match")
plt.ylabel("Normalised Distribution")

[0.13513513513513514, 0.1891891891891892, 0.08108108108108109, 0.216216216216
21623]
[0.13513513513513514, 0.16216216216216217, 0.08108108108108109, 0.18918918918
91892]
Average Female Keywords 0.15540540540540543
Average Male Keywords 0.14189189189189189

Out[249]: Text(0, 0.5, 'Normalised Distribution')

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 31/116

In [250]: X_1_female = []
X_1_male = []

for x_1, gender in zip(X_1_da,da_gender[0]):
 if gender == "Male":
 X_1_male.append(x_1)
 else:
 X_1_female.append(x_1)

for x_1, gender in zip(X_1_fo,fo_gender[0]):
 if gender == "Male":
 X_1_male.append(x_1)
 else:
 X_1_female.append(x_1)

for x_1, gender in zip(X_1_ro,ro_gender[0]):
 if gender == "Male":
 X_1_male.append(x_1)
 else:
 X_1_female.append(x_1)

print(X_1_female)
print(X_1_male)

print("Average Female Keywords",np.mean(X_1_female, axis=0))
print("Average Male Keywords",np.mean(X_1_male, axis=0))

sns.distplot(X_1_female, hist = False,bins=50,
 label = "Female",color="royalblue",kde_kws={'linestyle':'--'
}).set(xlim=(0))

sns.distplot(X_1_male, hist = False, bins=50,
 label = "Male",color="royalblue").set(xlim=(0))
plt.title("Figure 4.3.4: Gender Distribution of Requirement Keyword Feature (A
ll roles)")
plt.xlabel("Requirement Keyword Match")
plt.ylabel("Normalised Distribution")

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 32/116

Figure 4.3.4 shows that the female candidates have a slightly high average of meeting the keyword
requirements, but this doesn't appear to be significantly higher.

5 Linear Regression

Using the features calculated in the previous section, we used a linear regression model to model the rankings of
the candidates. We used the statsmodel library to model the regression, as it provides accurate p-values for the
significant of the features, and provides a regression table output for easier interpretation of the results. The
features were converted to matrices because it provides clear labelling of the features in the regression table
output.

As we will see below, not all of the features are significant/relevant for the rankings for each dataset. To find the
optimial model we use a basic and manual step method, where we iteratively remove non-significant features
until the model has only significant features.

5.1 Data Analyst

5.1.1 Original Genders

All features (Experience, Keywords, Gender)

Average Female Keywords 0.14634775971985275
Average Male Keywords 0.14578843793960075

Out[250]: Text(0, 0.5, 'Normalised Distribution')

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 33/116

In [256]: df = pd.DataFrame({'Experience':X_0_da,'Keywords':X_1_da,'Gender':X_3_da,'Ran
k':Y_da_o})
y, X = dmatrices('Rank ~ Experience + Keywords + Gender', data=df, return_type
='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 34/116

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.92
6
Model: OLS Adj. R-squared: 0.87
0
Method: Least Squares F-statistic: 16.6
7
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.010
0
Time: 11:50:05 Log-Likelihood: -7.572
2
No. Observations: 8 AIC: 23.1
4
Df Residuals: 4 BIC: 23.4
6
Df Model: 3
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 11.1018 1.289 8.614 0.001 7.523 14.68
0
Experience -0.0296 0.024 -1.226 0.287 -0.097 0.03
7
Keywords -25.4283 8.250 -3.082 0.037 -48.334 -2.52
3
Gender 0.0484 0.724 0.067 0.950 -1.961 2.05
8
===
=
Omnibus: 0.795 Durbin-Watson: 1.13
5
Prob(Omnibus): 0.672 Jarque-Bera (JB): 0.52
1
Skew: -0.524 Prob(JB): 0.77
1
Kurtosis: 2.317 Cond. No. 1.25e+0
3
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.
[2] The condition number is large, 1.25e+03. This might indicate that there a
re
strong multicollinearity or other numerical problems.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 35/116

Based on the results we see that the Gender feature is the least significant feature, so we remove it from the
model and re-fit the model with just the Experience and Keywords features.

Significant features (Experience, Keywords)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 36/116

In [257]: df = pd.DataFrame({'Experience':X_0_da,'Keywords':X_1_da,'Rank':Y_da_o})
y, X = dmatrices('Rank ~ Experience + Keywords', data=df, return_type='datafra
me')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 37/116

Generally the convention is to use a threshold of 0.05 for determining whether a feature is significant or not.
Therefore Experience is not significant, and we refit the model with just Keywords.

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.92
6
Model: OLS Adj. R-squared: 0.89
6
Method: Least Squares F-statistic: 31.2
2
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.0015
0
Time: 11:50:12 Log-Likelihood: -7.576
7
No. Observations: 8 AIC: 21.1
5
Df Residuals: 5 BIC: 21.3
9
Df Model: 2
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 11.1400 1.034 10.775 0.000 8.482 13.79
8
Experience -0.0288 0.019 -1.546 0.183 -0.077 0.01
9
Keywords -25.6486 6.770 -3.788 0.013 -43.052 -8.24
5
===
=
Omnibus: 0.999 Durbin-Watson: 1.07
0
Prob(Omnibus): 0.607 Jarque-Bera (JB): 0.53
0
Skew: -0.564 Prob(JB): 0.76
7
Kurtosis: 2.437 Cond. No. 1.14e+0
3
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.
[2] The condition number is large, 1.14e+03. This might indicate that there a
re
strong multicollinearity or other numerical problems.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 38/116

Significant features (Keywords)

In [258]: df = pd.DataFrame({'Keywords':X_1_da,'Rank':Y_da_o})
y, X = dmatrices('Rank ~ Keywords', data=df, return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.89
0
Model: OLS Adj. R-squared: 0.87
2
Method: Least Squares F-statistic: 48.7
5
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.00042
9
Time: 11:50:13 Log-Likelihood: -9.140
4
No. Observations: 8 AIC: 22.2
8
Df Residuals: 6 BIC: 22.4
4
Df Model: 1
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 11.6955 1.076 10.869 0.000 9.062 14.32
9
Keywords -33.6771 4.823 -6.982 0.000 -45.479 -21.87
5
===
=
Omnibus: 0.278 Durbin-Watson: 1.25
4
Prob(Omnibus): 0.870 Jarque-Bera (JB): 0.09
0
Skew: 0.130 Prob(JB): 0.95
6
Kurtosis: 2.551 Cond. No. 16.
3
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 39/116

Z-score - All features (Experience, Keywords, Gender)

We fitted the model with using the z-score versions of the Experience and Keywords features but we found that
we get the same results as the standard model. Z-score versions do not add anything to the model, so we just
use the basic version.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 40/116

In [259]: df = pd.DataFrame({'Experience':np.transpose(X_0_da_zscore)[0],'Keywords':np.t
ranspose(X_1_da_zscore)[0],'Gender':X_3_da,'Rank':Y_da_o})
y, X = dmatrices('Rank ~ Experience + Keywords + Gender', data=df, return_type
='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 41/116

5.1.2 Flipped Genders

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.92
6
Model: OLS Adj. R-squared: 0.87
0
Method: Least Squares F-statistic: 16.6
7
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.010
0
Time: 11:50:14 Log-Likelihood: -7.572
2
No. Observations: 8 AIC: 23.1
4
Df Residuals: 4 BIC: 23.4
6
Df Model: 3
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 4.4758 0.478 9.369 0.001 3.149 5.80
2
Experience -0.6913 0.564 -1.226 0.287 -2.257 0.87
4
Keywords -1.6325 0.530 -3.082 0.037 -3.103 -0.16
2
Gender 0.0484 0.724 0.067 0.950 -1.961 2.05
8
===
=
Omnibus: 0.795 Durbin-Watson: 1.13
5
Prob(Omnibus): 0.672 Jarque-Bera (JB): 0.52
1
Skew: -0.524 Prob(JB): 0.77
1
Kurtosis: 2.317 Cond. No. 4.0
7
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 42/116

For the following dataset and different jobs, we repeated the same step process to get the best fit model for the
data, given the features.

All features (Experience, Keywords, Gender)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 43/116

In [261]: df = pd.DataFrame({'Experience':X_0_da,'Keywords':X_1_da,'Gender':X_3_da,'Ran
k':Y_da_f})
y, X = dmatrices('Rank ~ Experience + Keywords + Gender', data=df, return_type
='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 44/116

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.80
4
Model: OLS Adj. R-squared: 0.65
7
Method: Least Squares F-statistic: 5.46
5
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.067
2
Time: 11:50:16 Log-Likelihood: -11.46
9
No. Observations: 8 AIC: 30.9
4
Df Residuals: 4 BIC: 31.2
5
Df Model: 3
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 6.8792 2.098 3.280 0.031 1.056 12.70
3
Experience -0.0635 0.039 -1.617 0.181 -0.172 0.04
6
Keywords 6.6982 13.427 0.499 0.644 -30.580 43.97
7
Gender -2.5013 1.178 -2.123 0.101 -5.772 0.77
0
===
=
Omnibus: 1.779 Durbin-Watson: 1.76
7
Prob(Omnibus): 0.411 Jarque-Bera (JB): 1.10
6
Skew: -0.788 Prob(JB): 0.57
5
Kurtosis: 2.085 Cond. No. 1.25e+0
3
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.
[2] The condition number is large, 1.25e+03. This might indicate that there a
re
strong multicollinearity or other numerical problems.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 45/116

Significant features (Experience, Gender)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 46/116

In [263]: df = pd.DataFrame({'Experience':X_0_da,'Keywords':X_1_da,'Gender':X_3_da,'Ran
k':Y_da_f})
y, X = dmatrices('Rank ~ Experience + Gender', data=df, return_type='datafram
e')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.79
2
Model: OLS Adj. R-squared: 0.70
8
Method: Least Squares F-statistic: 9.50
0
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.019
8
Time: 11:50:17 Log-Likelihood: -11.71
0
No. Observations: 8 AIC: 29.4
2
Df Residuals: 5 BIC: 29.6
6
Df Model: 2
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 7.7892 0.955 8.159 0.000 5.335 10.24
3
Experience -0.0476 0.021 -2.236 0.076 -0.102 0.00
7
Gender -2.7357 0.996 -2.747 0.040 -5.296 -0.17
6
===
=
Omnibus: 0.794 Durbin-Watson: 1.92
3
Prob(Omnibus): 0.672 Jarque-Bera (JB): 0.62
9
Skew: -0.517 Prob(JB): 0.73
0
Kurtosis: 2.095 Cond. No. 10
7.
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 47/116

In [264]: df = pd.DataFrame({'Experience':X_0_da,'Keywords':X_1_da,'Gender':X_3_da,'Ran
k':Y_da_f})
y, X = dmatrices('Rank ~ Gender', data=df, return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.58
3
Model: OLS Adj. R-squared: 0.51
4
Method: Least Squares F-statistic: 8.40
0
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.027
4
Time: 11:50:18 Log-Likelihood: -14.48
3
No. Observations: 8 AIC: 32.9
7
Df Residuals: 6 BIC: 33.1
2
Df Model: 1
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 6.2500 0.854 7.319 0.000 4.161 8.33
9
Gender -3.5000 1.208 -2.898 0.027 -6.455 -0.54
5
===
=
Omnibus: 1.452 Durbin-Watson: 1.71
4
Prob(Omnibus): 0.484 Jarque-Bera (JB): 0.44
4
Skew: 0.000 Prob(JB): 0.80
1
Kurtosis: 1.846 Cond. No. 2.6
2
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 48/116

Z-score - All features (Experience, Keywords, Gender)

Once again we found that z-score features gave the same results, so we expect this is very likely to be the case
for all datasets, and will just use the original features.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 49/116

In [265]: df = pd.DataFrame({'Experience':np.transpose(X_0_da_zscore)[0],'Keywords':np.t
ranspose(X_1_da_zscore)[0],'Gender':X_3_da,'Rank':Y_da_f})
y, X = dmatrices('Rank ~ Experience + Keywords + Gender', data=df, return_type
='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 50/116

5.1.3 Combined

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.80
4
Model: OLS Adj. R-squared: 0.65
7
Method: Least Squares F-statistic: 5.46
5
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.067
2
Time: 11:50:19 Log-Likelihood: -11.46
9
No. Observations: 8 AIC: 30.9
4
Df Residuals: 4 BIC: 31.2
5
Df Model: 3
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 5.7506 0.777 7.397 0.002 3.592 7.90
9
Experience -1.4834 0.918 -1.617 0.181 -4.031 1.06
4
Keywords 0.4300 0.862 0.499 0.644 -1.963 2.82
3
Gender -2.5013 1.178 -2.123 0.101 -5.772 0.77
0
===
=
Omnibus: 1.779 Durbin-Watson: 1.76
7
Prob(Omnibus): 0.411 Jarque-Bera (JB): 1.10
6
Skew: -0.788 Prob(JB): 0.57
5
Kurtosis: 2.085 Cond. No. 4.0
7
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 51/116

All features (Experience, Keywords, Gender)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 52/116

In [267]: df = pd.DataFrame({'Experience':X_0_da,'Keywords':X_1_da,'Gender':X_3_da,'Ran
k':Y_da_c})
y, X = dmatrices('Rank ~ Experience + Keywords + Gender', data=df, return_type
='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 53/116

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.64
3
Model: OLS Adj. R-squared: 0.37
5
Method: Least Squares F-statistic: 2.40
0
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.20
8
Time: 11:50:20 Log-Likelihood: -13.86
6
No. Observations: 8 AIC: 35.7
3
Df Residuals: 4 BIC: 36.0
5
Df Model: 3
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 9.8117 2.831 3.466 0.026 1.953 17.67
1
Experience -0.0253 0.053 -0.478 0.658 -0.172 0.12
2
Keywords -16.4646 18.119 -0.909 0.415 -66.771 33.84
2
Gender -1.5461 1.590 -0.972 0.386 -5.960 2.86
8
===
=
Omnibus: 6.556 Durbin-Watson: 1.95
1
Prob(Omnibus): 0.038 Jarque-Bera (JB): 2.24
0
Skew: -1.278 Prob(JB): 0.32
6
Kurtosis: 3.433 Cond. No. 1.25e+0
3
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.
[2] The condition number is large, 1.25e+03. This might indicate that there a
re
strong multicollinearity or other numerical problems.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 54/116

Significant features (Experience)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 55/116

In [269]: df = pd.DataFrame({'Experience':X_0_da,'Keywords':X_1_da,'Gender':X_3_da,'Ran
k':Y_da_c})
y, X = dmatrices('Rank ~ Experience', data=df, return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.53
0
Model: OLS Adj. R-squared: 0.45
1
Method: Least Squares F-statistic: 6.75
5
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.040
7
Time: 11:50:21 Log-Likelihood: -14.96
8
No. Observations: 8 AIC: 33.9
4
Df Residuals: 6 BIC: 34.0
9
Df Model: 1
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 7.3772 1.280 5.766 0.001 4.246 10.50
8
Experience -0.0713 0.027 -2.599 0.041 -0.138 -0.00
4
===
=
Omnibus: 2.346 Durbin-Watson: 2.53
7
Prob(Omnibus): 0.310 Jarque-Bera (JB): 0.87
4
Skew: -0.284 Prob(JB): 0.64
6
Kurtosis: 1.483 Cond. No. 93.
0
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 56/116

5.2 Finance Officer

5.2.1 Original Genders

All features (Experience, Keywords, Education, Gender)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 57/116

In [271]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_o})
y, X = dmatrices('Rank ~ Experience + Keywords + Gender + Education', data=df,
return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 58/116

Significant* features (Experience, Gender)

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.66
4
Model: OLS Adj. R-squared: 0.21
7
Method: Least Squares F-statistic: 1.48
5
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.38
8
Time: 11:50:23 Log-Likelihood: -13.61
7
No. Observations: 8 AIC: 37.2
3
Df Residuals: 3 BIC: 37.6
3
Df Model: 4
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 8.0397 2.591 3.103 0.053 -0.205 16.28
4
Experience -0.1782 0.133 -1.339 0.273 -0.602 0.24
5
Keywords 6.2902 39.083 0.161 0.882 -118.089 130.66
9
Gender -3.4318 2.093 -1.640 0.200 -10.093 3.22
9
Education -0.6503 3.739 -0.174 0.873 -12.550 11.25
0
===
=
Omnibus: 1.462 Durbin-Watson: 1.71
5
Prob(Omnibus): 0.481 Jarque-Bera (JB): 0.01
6
Skew: -0.069 Prob(JB): 0.99
2
Kurtosis: 3.171 Cond. No. 64
2.
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 59/116

In [273]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_o})
y, X = dmatrices('Rank ~ Experience + Gender', data=df, return_type='datafram
e')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.66
0
Model: OLS Adj. R-squared: 0.52
4
Method: Least Squares F-statistic: 4.85
8
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.067
3
Time: 11:50:24 Log-Likelihood: -13.66
6
No. Observations: 8 AIC: 33.3
3
Df Residuals: 5 BIC: 33.5
7
Df Model: 2
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 8.1234 1.330 6.108 0.002 4.704 11.54
2
Experience -0.1879 0.081 -2.310 0.069 -0.397 0.02
1
Gender -3.5946 1.285 -2.797 0.038 -6.898 -0.29
1
===
=
Omnibus: 1.123 Durbin-Watson: 1.77
0
Prob(Omnibus): 0.570 Jarque-Bera (JB): 0.11
6
Skew: -0.292 Prob(JB): 0.94
4
Kurtosis: 2.925 Cond. No. 35.
9
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 60/116

In [274]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_o})
y, X = dmatrices('Rank ~ Gender', data=df, return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.29
8
Model: OLS Adj. R-squared: 0.18
1
Method: Least Squares F-statistic: 2.54
2
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.16
2
Time: 11:50:24 Log-Likelihood: -16.57
1
No. Observations: 8 AIC: 37.1
4
Df Residuals: 6 BIC: 37.3
0
Df Model: 1
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 5.7500 1.109 5.186 0.002 3.037 8.46
3
Gender -2.5000 1.568 -1.594 0.162 -6.337 1.33
7
===
=
Omnibus: 1.531 Durbin-Watson: 1.66
1
Prob(Omnibus): 0.465 Jarque-Bera (JB): 0.67
8
Skew: 0.000 Prob(JB): 0.71
2
Kurtosis: 1.573 Cond. No. 2.6
2
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 61/116

5.2.2 Flipped Genders

All features (Experience, Keywords, Education, Gender)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 62/116

In [276]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_f})
y, X = dmatrices('Rank ~ Experience + Keywords + Gender + Education', data=df,
return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 63/116

Significant* features (Keywords, Gender)

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.54
8
Model: OLS Adj. R-squared: -0.05
5
Method: Least Squares F-statistic: 0.909
5
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.55
4
Time: 11:50:26 Log-Likelihood: -14.80
8
No. Observations: 8 AIC: 39.6
2
Df Residuals: 3 BIC: 40.0
1
Df Model: 4
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 9.2344 3.006 3.072 0.054 -0.333 18.80
1
Experience -0.0491 0.154 -0.318 0.771 -0.541 0.44
3
Keywords -32.5231 45.354 -0.717 0.525 -176.858 111.81
2
Gender -2.3153 2.429 -0.953 0.411 -10.045 5.41
5
Education -0.7214 4.339 -0.166 0.879 -14.531 13.08
8
===
=
Omnibus: 1.173 Durbin-Watson: 3.04
4
Prob(Omnibus): 0.556 Jarque-Bera (JB): 0.82
4
Skew: 0.616 Prob(JB): 0.66
2
Kurtosis: 2.024 Cond. No. 64
2.
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 64/116

In [278]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_f})
y, X = dmatrices('Rank ~ Keywords + Gender', data=df, return_type='dataframe'
)
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.50
8
Model: OLS Adj. R-squared: 0.31
1
Method: Least Squares F-statistic: 2.57
7
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.17
0
Time: 11:50:27 Log-Likelihood: -15.15
1
No. Observations: 8 AIC: 36.3
0
Df Residuals: 5 BIC: 36.5
4
Df Model: 2
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 8.8167 2.334 3.778 0.013 2.817 14.81
6
Keywords -42.9333 29.408 -1.460 0.204 -118.529 32.66
3
Gender -2.1167 1.462 -1.448 0.207 -5.875 1.64
1
===
=
Omnibus: 0.205 Durbin-Watson: 2.97
1
Prob(Omnibus): 0.902 Jarque-Bera (JB): 0.36
6
Skew: 0.060 Prob(JB): 0.83
3
Kurtosis: 1.959 Cond. No. 47.
0
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 65/116

5.2.3 Combined

All features (Experience, Keywords, Education, Gender)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 66/116

In [280]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_c})
y, X = dmatrices('Rank ~ Experience + Keywords + Education + Gender', data=df,
return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 67/116

Significant* features (Experience, Gender)

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.75
5
Model: OLS Adj. R-squared: 0.42
8
Method: Least Squares F-statistic: 2.30
8
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.25
9
Time: 11:50:28 Log-Likelihood: -12.36
3
No. Observations: 8 AIC: 34.7
3
Df Residuals: 3 BIC: 35.1
2
Df Model: 4
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 9.2637 2.215 4.183 0.025 2.216 16.31
2
Experience -0.1519 0.114 -1.334 0.274 -0.514 0.21
0
Keywords -29.0788 33.411 -0.870 0.448 -135.407 77.24
9
Education 0.9751 3.197 0.305 0.780 -9.198 11.14
8
Gender -3.8687 1.789 -2.162 0.119 -9.563 1.82
6
===
=
Omnibus: 1.042 Durbin-Watson: 2.98
7
Prob(Omnibus): 0.594 Jarque-Bera (JB): 0.60
6
Skew: 0.142 Prob(JB): 0.73
9
Kurtosis: 1.682 Cond. No. 64
2.
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 68/116

In [282]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_c})
y, X = dmatrices('Rank ~ Experience + Gender', data=df, return_type='datafram
e')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.69
0
Model: OLS Adj. R-squared: 0.56
6
Method: Least Squares F-statistic: 5.57
2
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.053
4
Time: 11:50:28 Log-Likelihood: -13.29
6
No. Observations: 8 AIC: 32.5
9
Df Residuals: 5 BIC: 32.8
3
Df Model: 2
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 8.0163 1.270 6.313 0.001 4.752 11.28
1
Experience -0.1596 0.078 -2.056 0.095 -0.359 0.04
0
Gender -3.9299 1.227 -3.203 0.024 -7.084 -0.77
6
===
=
Omnibus: 1.540 Durbin-Watson: 2.67
0
Prob(Omnibus): 0.463 Jarque-Bera (JB): 0.31
4
Skew: 0.484 Prob(JB): 0.85
5
Kurtosis: 2.925 Cond. No. 35.
9
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 69/116

In [283]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_c})
y, X = dmatrices('Rank ~ Gender', data=df, return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.42
9
Model: OLS Adj. R-squared: 0.33
3
Method: Least Squares F-statistic: 4.50
0
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.078
1
Time: 11:50:29 Log-Likelihood: -15.74
6
No. Observations: 8 AIC: 35.4
9
Df Residuals: 6 BIC: 35.6
5
Df Model: 1
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 6.0000 1.000 6.000 0.001 3.553 8.44
7
Gender -3.0000 1.414 -2.121 0.078 -6.460 0.46
0
===
=
Omnibus: 0.992 Durbin-Watson: 3.04
2
Prob(Omnibus): 0.609 Jarque-Bera (JB): 0.70
4
Skew: 0.433 Prob(JB): 0.70
3
Kurtosis: 1.833 Cond. No. 2.6
2
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 70/116

5.3 Recruitment Officer

5.3.1 Original Genders

All features (Experience, Keywords, Education, Gender)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 71/116

In [285]: df = pd.DataFrame({'Experience':X_0_ro,'Keywords':X_1_ro,'Education':X_2_ro,'G
ender':X_3_ro,'Rank':Y_ro_o})
y, X = dmatrices('Rank ~ Experience + Keywords + Gender + Education', data=df,
return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 72/116

Significant features (Keywords, Gender)

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.93
9
Model: OLS Adj. R-squared: 0.85
7
Method: Least Squares F-statistic: 11.4
7
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.036
6
Time: 11:50:30 Log-Likelihood: -6.821
1
No. Observations: 8 AIC: 23.6
4
Df Residuals: 3 BIC: 24.0
4
Df Model: 4
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 9.7053 1.388 6.993 0.006 5.289 14.12
2
Experience 0.0098 0.079 0.124 0.909 -0.241 0.26
1
Keywords -38.3517 9.455 -4.056 0.027 -68.443 -8.26
0
Gender 1.2411 0.960 1.293 0.287 -1.813 4.29
5
Education -0.6457 0.946 -0.683 0.544 -3.655 2.36
4
===
=
Omnibus: 1.155 Durbin-Watson: 1.78
1
Prob(Omnibus): 0.561 Jarque-Bera (JB): 0.30
3
Skew: 0.462 Prob(JB): 0.85
9
Kurtosis: 2.759 Cond. No. 39
0.
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 73/116

In [287]: df = pd.DataFrame({'Experience':X_0_ro,'Keywords':X_1_ro,'Education':X_2_ro,'G
ender':X_3_ro,'Rank':Y_ro_o})
y, X = dmatrices('Rank ~ Keywords + Gender', data=df, return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.92
9
Model: OLS Adj. R-squared: 0.90
1
Method: Least Squares F-statistic: 32.7
5
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.0013
4
Time: 11:50:31 Log-Likelihood: -7.399
7
No. Observations: 8 AIC: 20.8
0
Df Residuals: 5 BIC: 21.0
4
Df Model: 2
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 10.1064 0.994 10.172 0.000 7.552 12.66
0
Keywords -42.5106 5.891 -7.216 0.001 -57.654 -27.36
7
Gender 1.4255 0.552 2.585 0.049 0.008 2.84
3
===
=
Omnibus: 1.746 Durbin-Watson: 1.78
0
Prob(Omnibus): 0.418 Jarque-Bera (JB): 0.86
1
Skew: 0.759 Prob(JB): 0.65
0
Kurtosis: 2.472 Cond. No. 25.
2
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 74/116

5 3 2 Flipped Genders

All features (Experience, Keywords, Education, Gender)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 75/116

In [289]: df = pd.DataFrame({'Experience':X_0_ro,'Keywords':X_1_ro,'Education':X_2_ro,'G
ender':X_3_ro,'Rank':Y_ro_f})
y, X = dmatrices('Rank ~ Experience + Keywords + Gender + Education', data=df,
return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 76/116

Significant features (Keywords)

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.56
3
Model: OLS Adj. R-squared: -0.01
9
Method: Least Squares F-statistic: 0.968
1
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.53
2
Time: 11:50:32 Log-Likelihood: -14.66
9
No. Observations: 8 AIC: 39.3
4
Df Residuals: 3 BIC: 39.7
3
Df Model: 4
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 9.8680 3.701 2.666 0.076 -1.911 21.64
7
Experience -0.0074 0.210 -0.035 0.974 -0.677 0.66
2
Keywords -27.6381 25.217 -1.096 0.353 -107.891 52.61
5
Gender -1.5702 2.560 -0.613 0.583 -9.716 6.57
6
Education -1.0277 2.522 -0.407 0.711 -9.054 6.99
9
===
=
Omnibus: 0.853 Durbin-Watson: 0.79
9
Prob(Omnibus): 0.653 Jarque-Bera (JB): 0.64
2
Skew: 0.383 Prob(JB): 0.72
5
Kurtosis: 1.843 Cond. No. 39
0.
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 77/116

In [291]: df = pd.DataFrame({'Experience':X_0_ro,'Keywords':X_1_ro,'Education':X_2_ro,'G
ender':X_3_ro,'Rank':Y_ro_f})
y, X = dmatrices('Rank ~ Keywords', data=df, return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.43
7
Model: OLS Adj. R-squared: 0.34
4
Method: Least Squares F-statistic: 4.66
7
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.074
1
Time: 11:50:33 Log-Likelihood: -15.68
3
No. Observations: 8 AIC: 35.3
7
Df Residuals: 6 BIC: 35.5
2
Df Model: 1
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 9.3125 2.336 3.987 0.007 3.597 15.02
8
Keywords -32.3750 14.987 -2.160 0.074 -69.046 4.29
6
===
=
Omnibus: 0.914 Durbin-Watson: 0.98
7
Prob(Omnibus): 0.633 Jarque-Bera (JB): 0.70
2
Skew: 0.522 Prob(JB): 0.70
4
Kurtosis: 1.992 Cond. No. 21.
8
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 78/116

5.3.3 Combined

All features (Experience, Keywords, Education, Gender)

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 79/116

In [293]: df = pd.DataFrame({'Experience':X_0_ro,'Keywords':X_1_ro,'Education':X_2_ro,'G
ender':X_3_ro,'Rank':Y_ro_c})
y, X = dmatrices('Rank ~ Experience + Keywords + Gender + Education', data=df,
return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 80/116

Significant features (Experience, Keywords)

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.88
6
Model: OLS Adj. R-squared: 0.73
5
Method: Least Squares F-statistic: 5.84
2
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.089
4
Time: 11:50:34 Log-Likelihood: -9.290
5
No. Observations: 8 AIC: 28.5
8
Df Residuals: 3 BIC: 28.9
8
Df Model: 4
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 8.3271 1.890 4.407 0.022 2.313 14.34
1
Experience 0.1643 0.107 1.530 0.223 -0.177 0.50
6
Keywords -33.1979 12.875 -2.579 0.082 -74.171 7.77
5
Gender -0.6411 1.307 -0.491 0.657 -4.800 3.51
8
Education -1.4454 1.288 -1.123 0.343 -5.543 2.65
2
===
=
Omnibus: 2.550 Durbin-Watson: 0.80
0
Prob(Omnibus): 0.279 Jarque-Bera (JB): 0.88
8
Skew: 0.257 Prob(JB): 0.64
2
Kurtosis: 1.451 Cond. No. 39
0.
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 81/116

In [295]: df = pd.DataFrame({'Experience':X_0_ro,'Keywords':X_1_ro,'Education':X_2_ro,'G
ender':X_3_ro,'Rank':Y_ro_c})
y, X = dmatrices('Rank ~ Experience + Keywords', data=df, return_type='datafra
me')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.83
7
Model: OLS Adj. R-squared: 0.77
1
Method: Least Squares F-statistic: 12.8
1
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.010
8
Time: 11:50:35 Log-Likelihood: -10.73
4
No. Observations: 8 AIC: 27.4
7
Df Residuals: 5 BIC: 27.7
1
Df Model: 2
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 9.1864 1.596 5.755 0.002 5.083 13.28
9
Experience 0.1313 0.070 1.865 0.121 -0.050 0.31
2
Keywords -42.1138 8.848 -4.760 0.005 -64.858 -19.36
9
===
=
Omnibus: 2.836 Durbin-Watson: 0.79
3
Prob(Omnibus): 0.242 Jarque-Bera (JB): 1.33
8
Skew: 0.975 Prob(JB): 0.51
2
Kurtosis: 2.538 Cond. No. 28
9.
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 82/116

Significant features (Keywords)

In [296]: y, X = dmatrices('Rank ~ Keywords', data=df, return_type='dataframe')
mod = sm.OLS(y,X)
res = mod.fit()
print(res.summary())

 OLS Regression Results
===
=
Dep. Variable: Rank R-squared: 0.72
3
Model: OLS Adj. R-squared: 0.67
7
Method: Least Squares F-statistic: 15.6
8
Date: Fri, 25 Sep 2020 Prob (F-statistic): 0.0074
6
Time: 11:50:36 Log-Likelihood: -12.84
6
No. Observations: 8 AIC: 29.6
9
Df Residuals: 6 BIC: 29.8
5
Df Model: 1
Covariance Type: nonrobust
===
=
 coef std err t P>|t| [0.025 0.97
5]

-
Intercept 10.6875 1.638 6.523 0.001 6.679 14.69
6
Keywords -41.6250 10.513 -3.959 0.007 -67.349 -15.90
1
===
=
Omnibus: 0.664 Durbin-Watson: 0.86
6
Prob(Omnibus): 0.717 Jarque-Bera (JB): 0.20
3
Skew: -0.342 Prob(JB): 0.90
3
Kurtosis: 2.625 Cond. No. 21.
8
===
=

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correc
tly specified.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 83/116

5 4 Train / Test Experiment

For some internal testing, we did some k-folds testing of the regression models.

In [298]: def prediction_to_rank(predictions):
 ranks = []
 temp = sorted(predictions)

 for resume in predictions:
 index = temp.index(resume)
 ranks.append(index+1)

 return ranks

In [297]: def repeated_regression_test(model, df, num_repeats):
 count = 0
 mean_total = 0
 r2_total = 0
 rkf = RepeatedKFold(n_splits=2, n_repeats=num_repeats, random_state=265212
4)
 for train_index, test_index in rkf.split(X_da):
 train_df = df.iloc[train_index]
 test_df = df.iloc[test_index]
 y, X = dmatrices(model, data=train_df, return_type='dataframe')

 mod = sm.OLS(y,X)
 res = mod.fit()

 y, X = dmatrices(model, data=test_df, return_type='dataframe')
 prediction = res.predict(X)

 count += 1
 mean_total += mean_squared_error(prediction_to_rank(y.to_numpy()), pre
diction_to_rank(prediction))
 r2_total += r2_score(prediction_to_rank(y.to_numpy()), prediction_to_r
ank(prediction))

 print('Average Mean squared error: %.2f'
 % (mean_total/count))

 # The coefficient of determination: 1 is perfect prediction
 print('Average Coefficient of determination (R^2): %.2f'
 % (r2_total/count))

We were a bit curious about the R^2 results, and wanted to check them with our own R^2 function.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 84/116

In [98]: def r2_score_a(observed, predicted):
 mean = np.mean(observed)
 sum_sq_total = 0

 for y in observed:
 sum_sq_total += (y - mean)**2

 sum_sq_res = 0
 for y, f in zip(observed,predicted):
 sum_sq_res += (y - f)**2

 return (1 - (sum_sq_res/sum_sq_total))

5.4.1 Data Analyst

5.4.1.1 Original Gender

In [126]: df = pd.DataFrame({'Experience':X_0_da,'Keywords':X_1_da,'Gender':X_3_da,'Ran
k':Y_da_o})

In [127]: repeated_regression_test('Rank ~ Experience + Keywords + Gender', df, 500)

In [128]: repeated_regression_test('Rank ~ Keywords + Gender', df, 500)

In [129]: repeated_regression_test('Rank ~ Keywords', df, 500)

5.4.1.2 Flipped Gender

In [130]: df = pd.DataFrame({'Experience':X_0_da,'Keywords':X_1_da,'Gender':X_3_da,'Ran
k':Y_da_f})

In [131]: repeated_regression_test('Rank ~ Experience + Keywords + Gender', df, 500)

Average Mean squared error: 1.05
Average Coefficient of determination (R^2): 0.16

Average Mean squared error: 0.36
Average Coefficient of determination (R^2): 0.71

Average Mean squared error: 0.16
Average Coefficient of determination (R^2): 0.87

Average Mean squared error: 1.41
Average Coefficient of determination (R^2): -0.13

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 85/116

In [132]: repeated_regression_test('Rank ~ Experience + Gender', df, 500)

In [133]: repeated_regression_test('Rank ~ Experience', df, 500)

5.4.1.3 Combined Dataset

In [134]: df = pd.DataFrame({'Experience':X_0_da,'Keywords':X_1_da,'Gender':X_3_da,'Ran
k':Y_da_c})

In [135]: repeated_regression_test('Rank ~ Experience + Keywords + Gender', df, 500)

In [136]: repeated_regression_test('Rank ~ Experience', df, 500)

5.4.2 Finance Officer

5.4.2.1 Original Gender

In [137]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_o})

In [138]: repeated_regression_test('Rank ~ Experience + Keywords + Gender + Education',
df, 500)

In [139]: repeated_regression_test('Rank ~ Experience + Gender', df, 500)

5.4.2.2 Flipped Gender

Average Mean squared error: 0.88
Average Coefficient of determination (R^2): 0.30

Average Mean squared error: 1.65
Average Coefficient of determination (R^2): -0.32

Average Mean squared error: 2.00
Average Coefficient of determination (R^2): -0.60

Average Mean squared error: 1.19
Average Coefficient of determination (R^2): 0.05

Average Mean squared error: 2.35
Average Coefficient of determination (R^2): -0.88

Average Mean squared error: 1.37
Average Coefficient of determination (R^2): -0.09

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 86/116

In [140]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_f})

In [141]: repeated_regression_test('Rank ~ Experience + Keywords + Gender + Education',
df, 500)

In [142]: repeated_regression_test('Rank ~ Keywords + Gender', df, 500)

5.4.2.3 Combined Dataset

In [143]: df = pd.DataFrame({'Experience':X_0_fo,'Keywords':X_1_fo,'Education':X_2_fo,'G
ender':X_3_fo,'Rank':Y_fo_c})

In [144]: repeated_regression_test('Rank ~ Experience + Keywords + Gender + Education',
df, 500)

In [145]: repeated_regression_test('Rank ~ Experience + Gender', df, 500)

5.4.3 Recruitment Officer

5.4.3.1 Original Gender

In [146]: df = pd.DataFrame({'Experience':X_0_ro,'Keywords':X_1_ro,'Education':X_2_ro,'G
ender':X_3_ro,'Rank':Y_ro_o})

In [147]: repeated_regression_test('Rank ~ Experience + Keywords + Gender + Education',
df, 500)

In [148]: repeated_regression_test('Rank ~ Keywords + Gender', df, 500)

Average Mean squared error: 2.60
Average Coefficient of determination (R^2): -1.08

Average Mean squared error: 1.71
Average Coefficient of determination (R^2): -0.37

Average Mean squared error: 2.50
Average Coefficient of determination (R^2): -1.00

Average Mean squared error: 1.28
Average Coefficient of determination (R^2): -0.03

Average Mean squared error: 1.78
Average Coefficient of determination (R^2): -0.43

Average Mean squared error: 0.35
Average Coefficient of determination (R^2): 0.72

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 87/116

5.4.3.2 Flipped Gender

In [149]: df = pd.DataFrame({'Experience':X_0_ro,'Keywords':X_1_ro,'Education':X_2_ro,'G
ender':X_3_ro,'Rank':Y_ro_f})

In [150]: repeated_regression_test('Rank ~ Experience + Keywords + Gender + Education',
df, 500)

In [151]: repeated_regression_test('Rank ~ Keywords', df, 500)

5.4.3.3 Combined Dataset

In [152]: df = pd.DataFrame({'Experience':X_0_ro,'Keywords':X_1_ro,'Education':X_2_ro,'G
ender':X_3_ro,'Rank':Y_ro_c})

In [154]: repeated_regression_test('Rank ~ Experience + Keywords + Gender + Education',
df, 500)

In [155]: repeated_regression_test('Rank ~ Keywords', df, 500)

6 Clustering

One of the things we tried to do, was to see whether an algorithm could find patterns/groups of the top
candidates based on the feature inputs without human input on what a good candidate is.

We attempted this by trying to use clustering to identify groups of candidates based on the features, and see
whether these groups of candidates have similar rankings from the human panelists. We visualise this with a
scatter plot, where the colour of the points represent the difference groups and the numbers are the rankings
from the human panelists.

Average Mean squared error: 2.80
Average Coefficient of determination (R^2): -1.24

Average Mean squared error: 0.97
Average Coefficient of determination (R^2): 0.22

Average Mean squared error: 2.01
Average Coefficient of determination (R^2): -0.61

Average Mean squared error: 0.49
Average Coefficient of determination (R^2): 0.61

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 88/116

In [156]: def cluster_scatter(X, Y, num_clusters):
 kmeans = KMeans(n_clusters=num_clusters)
 scaler = MinMaxScaler()
 X = scaler.fit_transform(X)
 kmeans.fit(X)
 y_kmeans = kmeans.predict(X)
 plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')
 plt.xlabel("Weighted Relevant Experience")
 plt.ylabel("Requirement Keyword Match")

 for i, txt in enumerate(Y):
 plt.annotate(txt, (X[i, 0], X[i, 1]),
 textcoords="offset points", xytext=(0, 10))

We have also included a Voronoi graph, which shows the boundaries of the different groups calculated by the K-
mean clustering algorithm. I.e. any point that lands in the blue area will be assigned to the blue group by the
algorithm when predicting.

In [157]: def cluster_voronoi(X,Y,num_clusters,xlim,ylim):
 kmeans = KMeans(n_clusters=num_clusters)
 scaler = MinMaxScaler()
 X = scaler.fit_transform(X)
 kmeans.fit(X)

 # add 4 distant dummy points for the polygon colouring
 kmeans.cluster_centers_ = np.append(kmeans.cluster_centers_, [[999,999], [
-999,999], [999,-999], [-999,-999]], axis = 0)
 vor = Voronoi(kmeans.cluster_centers_)

 # plot
 voronoi_plot_2d(vor, show_vertices = False)

 # # colorize
 for region in vor.regions:
 if not -1 in region:
 polygon = [vor.vertices[i] for i in region]
 plt.fill(*zip(*polygon))

 # fix the range of axes
 plt.xlim(xlim), plt.ylim(ylim)

 plt.xlabel("Weighted Relevant Experience")
 plt.ylabel("Requirement Keyword Match")

 for i, txt in enumerate(Y):
 plt.annotate(txt, (X[i,0], X[i,1]))

 plt.show()

6.1 Data Analyst

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 89/116

We were mainly curious about how well the experience and keyword features captured the relationships in the
data, so we reduced the dataset to just these two features, so it was easier to visualise.

In [158]: X_da_cluster = np.column_stack((X_0_da,X_1_da))

6.1.1 Combined Results

In [159]: cluster_scatter(X_da_cluster,Y_da_c,3)

In [160]: cluster_voronoi(X_da_cluster,Y_da_c,3,[-0.1,1.1],[-0.1,1.1])

6.1.2 Original Genders

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 90/116

In [299]: cluster_scatter(X_da_cluster,Y_da_o,3)

This clustering result is nearly ideal, where the purple group could represent the top candidates, and the yellow
group represents the worst candidates. Of course, this is still dependent on what the human panelists view as a
top candidate.

In [162]: cluster_voronoi(X_da_cluster,Y_da_o,3,[-0.1,1.1],[-0.1,1.1])

6.1.3 Flipped Genders

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 91/116

In [163]: cluster_scatter(X_da_cluster,Y_da_f,3)

In [164]: cluster_voronoi(X_da_cluster,Y_da_f,3,[-0.1,1.1],[-0.1,1.1])

6.4 Finance Officer

In [165]: X_fo_cluster = np.column_stack((X_0_fo,X_1_fo))

6.4.1 Combined Results

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 92/116

In [166]: cluster_scatter(X_fo_cluster,Y_fo_c,4)

In [167]: cluster_voronoi(X_fo_cluster,Y_fo_c,3,[-0.1,1.1],[-0.1,1.1])

6.4.2 Original Genders

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 93/116

In [168]: cluster_scatter(X_fo_cluster,Y_fo_o,4)

In [304]: cluster_voronoi(X_fo_cluster,Y_fo_o,3,[-0.1,1.1],[-0.1,1.1])

6.4.3 Flipped Genders

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 94/116

In [170]: cluster_scatter(X_fo_cluster,Y_fo_f,4)

In [303]: cluster_voronoi(X_fo_cluster,Y_fo_f,3,[-0.1,1.1],[-0.1,1.1])

6.5 Recruitment Officer

In [172]: X_ro_cluster = np.column_stack((X_0_ro,X_1_ro))

6.5.1 Combined Results

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 95/116

In [173]: cluster_scatter(X_ro_cluster,Y_ro_c,4)

In [302]: cluster_voronoi(X_ro_cluster,Y_ro_c,3,[-0.1,1.1],[-0.1,1.1])

6.5.2 Original Genders

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 96/116

In [175]: cluster_scatter(X_ro_cluster,Y_ro_o,4)

In [301]: cluster_voronoi(X_ro_cluster,Y_ro_o,3,[-0.1,1.1],[-0.1,1.1])

6.5.3 Flipped Genders

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 97/116

In [177]: cluster_scatter(X_ro_cluster,Y_ro_f,4)

In [300]: cluster_voronoi(X_ro_cluster,Y_ro_f,3,[-0.1,1.1],[-0.1,1.1])

7 Statistical Analysis of the rankings

For internal testing of the results, we computed a few statistics to compare against the results and
interpretations. The testing of significant features was moved to Section 5.

7.1 Rank Boxplots

To confirm whether the rank aggregation methods make sense and work as expected, we created boxplots of the
ranking data of the candidates and compared them to the aggregated rankings.

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 98/116

7.1.1 Data Analyst

In [306]: bplot = plt.boxplot(da_ranks_o, patch_artist=True)
ax = plt.gca()
ax.set_ylim(ax.get_ylim()[::-1]) #flips the y-axis values
plt.xlabel("Resume Number")
plt.ylabel("Ranking")
plt.title("Figure 7.1.1.1: Rank Distribution of Data Analyst (Original Gende
r)")

print("Mean Aggregation Method:",y_da_o)
print("Ordered Pair Distance Aggregation Method:",Y_da_o)

fill with colors to match gender
colors = ['pink', 'lightblue', 'lightblue','pink','lightblue','lightblue','pin
k','pink']

for patch, color in zip(bplot['boxes'], colors):
 patch.set_facecolor(color)

Mean Aggregation Method: [8, 1, 6, 7, 5, 2, 3, 4]
Mean Aggregation Method: [8, 1, 5, 6, 7, 4, 2, 3]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 99/116

In [309]: bplot = plt.boxplot(da_ranks_f, patch_artist=True)
ax = plt.gca()
ax.set_ylim(ax.get_ylim()[::-1]) #flips the y-axis values
plt.title("Figure 7.1.1.2: Rank Distribution of Data Analyst (Flipped Gender)"
)

print("Mean Aggregation Method:",y_da_f)
print("Ordered Pair Distance Aggregation Method:",Y_da_f)

fill with colors
colors = ['pink', 'lightblue', 'lightblue','pink','lightblue','lightblue','pin
k','pink']

for patch, color in zip(bplot['boxes'], colors):
 patch.set_facecolor(color)

Mean Aggregation Method: [8, 1, 2, 7, 5, 3, 6, 4]
Ordered Pair Distance Aggregation Method: [8, 1, 2, 7, 3, 5, 6, 4]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 100/116

In [310]: bplot = plt.boxplot(da_ranks_c, patch_artist=True)
ax = plt.gca()
ax.set_ylim(ax.get_ylim()[::-1]) #flips the y-axis values

plt.xlabel("Resume Number")
plt.ylabel("Ranking")

plt.title("Figure 7.1.1.3: Rank Distribution of Data Analyst (Combined)")

print("Mean Aggregation Method:",y_da_c)
print("Ordered Pair Distance Aggregation Method:",Y_da_c)

fill with colors
colors = ['pink', 'lightblue', 'lightblue','pink','lightblue','lightblue','pin
k','pink']

for patch, color in zip(bplot['boxes'], colors):
 patch.set_facecolor(color)

7.1.2 Finance Officer

Because the Data Analyst boxplot results met our expectations, we only did a single boxplot for Finance Officer
and Recruitment Officer.

Mean Aggregation Method: [8, 1, 3, 7, 5, 2, 6, 4]
Ordered Pair Distance Aggregation Method: [8, 1, 3, 7, 6, 4, 5, 2]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 101/116

In [312]: bplot = plt.boxplot(fo_ranks_c, patch_artist=True)
ax = plt.gca()
ax.set_ylim(ax.get_ylim()[::-1]) #flips the y-axis values

plt.xlabel("Resume Number")
plt.ylabel("Ranking")
plt.title("Figure 7.1.2.1: Rank Distribution of Finance Officer (Combined)")

print("Mean Aggregation Method:",y_fo_c)
print("Ordered Pair Distance Aggregation Method:",Y_fo_c)

fill with colors
colors = ['lightblue', 'pink', 'pink','pink','lightblue','lightblue','pink','l
ightblue']

for patch, color in zip(bplot['boxes'], colors):
 patch.set_facecolor(color)

7.1.3 Recruitment Officer

Mean Aggregation Method: [1, 6, 8, 7, 2, 4, 5, 2]
Ordered Pair Distance Aggregation Method: [2, 5, 8, 7, 1, 6, 4, 3]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 102/116

In [314]: bplot = plt.boxplot(ro_ranks_c, patch_artist=True)
ax = plt.gca()
ax.set_ylim(ax.get_ylim()[::-1]) #flips the y-axis values

plt.xlabel("Resume Number")
plt.ylabel("Ranking")
plt.title("Figure 7.1.3.1: Rank Distribution of Recruitment Officer (Combine
d)")

print("Mean Aggregation Method:",y_ro_c)
print("Ordered Pair Distance Aggregation Method:",Y_ro_c)

fill with colors
colors = ['pink', 'lightblue', 'lightblue','lightblue','pink','pink','pink','l
ightblue']

for patch, color in zip(bplot['boxes'], colors):
 patch.set_facecolor(color)

7.4 Group Fairness Metric

We developed a function to calculate the group fairness of our model to check whether it was bias towards either
gender. Group fairness is when both groups/genders have approximately equal probability of being predicted to
be a top candidate. After calculating the results, we realised that the group fairness metric doesn't exactly align
with the model design, so it doesn't identify the amount of bias in the model. So, we did not use the results in the
final report.

Mean Aggregation Method: [5, 7, 4, 8, 3, 6, 2, 1]
Ordered Pair Distance Aggregation Method: [7, 6, 4, 8, 2, 5, 1, 3]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 103/116

In [202]: def group_fairness(ranks, genders, top3):

 # If the individual ranks are passed in, convert them to group format.
 if not top3:
 group_ranks = []

 for rank in ranks:
 temp_rank = []

 for resume in rank:

 if resume < 4:
 temp_rank.append(1)
 elif resume > 5:
 temp_rank.append(-1)
 else:
 temp_rank.append(0)

 group_ranks.append(temp_rank)

 ranks = group_ranks

 total = 0
 top_male = 0
 top_female = 0
 middle_male = 0
 middle_female = 0
 bottom_male = 0
 bottom_female = 0

 for rank in ranks:
 for resume, gender in zip(rank,genders):
 total += 1

 if resume == 1:
 if gender == 'Male':
 top_male += 1
 else:
 top_female += 1

 elif resume == 0:
 if gender == 'Male':
 middle_male += 1
 else:
 middle_female += 1
 else:
 if gender == 'Male':
 bottom_male += 1
 else:
 bottom_female += 1

 print('Top 3 Male Proportion: %.4f' % (top_male/total))
 print('Top 3 Female Proportion: %.4f' % (top_female/total))
 print('Middle 2 Male Proportion: %.4f' % (middle_male/total))
 print('Middle 2 Female Proportion: %.4f' % (middle_female/total))

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 104/116

 print('Bottom 3 Male Proportion: %.4f' % (bottom_male/total))
 print('Bottom 3 Female Proportion: %.4f' % (bottom_female/total))
 print()

In [203]: group_fairness(da_ranks_o,da_gender[0],False)

7.4.1 Data Analyst

All Participants

In [204]: print("Original Gender Ranks (#participants = %d)"%len(da_ranks_o))
group_fairness(da_ranks_o,da_gender[0],False)

print("Flipped Gender Ranks (#participants = %d)"%len(da_ranks_f))
group_fairness(da_ranks_f,da_gender[0],False)

print("Combined Gender Ranks (#participants = %d)"%len(da_ranks_c))
group_fairness(da_ranks_c,da_gender[0],False)

Top 3 Male Proportion: 0.2202
Top 3 Female Proportion: 0.1548
Middle 2 Male Proportion: 0.1667
Middle 2 Female Proportion: 0.0833
Bottom 3 Male Proportion: 0.1131
Bottom 3 Female Proportion: 0.2619

Original Gender Ranks (#participants = 21)
Top 3 Male Proportion: 0.2202
Top 3 Female Proportion: 0.1548
Middle 2 Male Proportion: 0.1667
Middle 2 Female Proportion: 0.0833
Bottom 3 Male Proportion: 0.1131
Bottom 3 Female Proportion: 0.2619

Flipped Gender Ranks (#participants = 18)
Top 3 Male Proportion: 0.2917
Top 3 Female Proportion: 0.0903
Middle 2 Male Proportion: 0.1111
Middle 2 Female Proportion: 0.1389
Bottom 3 Male Proportion: 0.0972
Bottom 3 Female Proportion: 0.2708

Combined Gender Ranks (#participants = 39)
Top 3 Male Proportion: 0.2532
Top 3 Female Proportion: 0.1250
Middle 2 Male Proportion: 0.1410
Middle 2 Female Proportion: 0.1090
Bottom 3 Male Proportion: 0.1058
Bottom 3 Female Proportion: 0.2660

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 105/116

Participant Group Ranks

In [205]: with open("CV Json Research Data/Job 1 - Data Analyst/group_rankings_original.
csv", encoding='utf-8-sig') as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ranks=np.asfarray(ranks,float)

print("Original Gender Ranks (#groups = %d)" %len(ranks))
group_fairness(ranks,da_gender[0],True)

with open("CV Json Research Data/Job 1 - Data Analyst/group_rankings_flipped.c
sv", encoding='utf-8-sig') as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ranks=np.asfarray(ranks,float)

print("Flipped Gender Ranks (#groups = %d)" %len(ranks))
group_fairness(ranks,da_gender[0],True)

with open("CV Json Research Data/Job 1 - Data Analyst/group_rankings_combined.
csv", encoding='utf-8-sig') as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ranks=np.asfarray(ranks,float)

print("Combined Gender Ranks (#groups = %d)" %len(ranks))
group_fairness(ranks,da_gender[0],True)

Original Gender Ranks (#groups = 2)
Top 3 Male Proportion: 0.1875
Top 3 Female Proportion: 0.1875
Middle 2 Male Proportion: 0.2500
Middle 2 Female Proportion: 0.0625
Bottom 3 Male Proportion: 0.0625
Bottom 3 Female Proportion: 0.2500

Flipped Gender Ranks (#groups = 2)
Top 3 Male Proportion: 0.2500
Top 3 Female Proportion: 0.1250
Middle 2 Male Proportion: 0.1250
Middle 2 Female Proportion: 0.1250
Bottom 3 Male Proportion: 0.1250
Bottom 3 Female Proportion: 0.2500

Combined Gender Ranks (#groups = 4)
Top 3 Male Proportion: 0.2188
Top 3 Female Proportion: 0.1562
Middle 2 Male Proportion: 0.1875
Middle 2 Female Proportion: 0.0938
Bottom 3 Male Proportion: 0.0938
Bottom 3 Female Proportion: 0.2500

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 106/116

7.4.2 Finance Officer

In [206]: print("Original Gender Ranks (#participants = %d)" %len(fo_ranks_o))
group_fairness(fo_ranks_o,fo_gender[0],False)

print("Flipped Gender Ranks (#participants = %d)" %len(fo_ranks_f))
group_fairness(fo_ranks_f,fo_gender[0],False)

print("Combined Gender Ranks (#participants = %d)" %len(fo_ranks_c))
group_fairness(fo_ranks_c,fo_gender[0],False)

Original Gender Ranks (#participants = 22)
Top 3 Male Proportion: 0.2500
Top 3 Female Proportion: 0.1250
Middle 2 Male Proportion: 0.1364
Middle 2 Female Proportion: 0.1136
Bottom 3 Male Proportion: 0.1136
Bottom 3 Female Proportion: 0.2614

Flipped Gender Ranks (#participants = 16)
Top 3 Male Proportion: 0.2734
Top 3 Female Proportion: 0.1016
Middle 2 Male Proportion: 0.1250
Middle 2 Female Proportion: 0.1250
Bottom 3 Male Proportion: 0.1016
Bottom 3 Female Proportion: 0.2734

Combined Gender Ranks (#participants = 38)
Top 3 Male Proportion: 0.2599
Top 3 Female Proportion: 0.1151
Middle 2 Male Proportion: 0.1316
Middle 2 Female Proportion: 0.1184
Bottom 3 Male Proportion: 0.1086
Bottom 3 Female Proportion: 0.2664

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 107/116

In [207]: with open("CV Json Research Data/Job 2 - Finance Officer/group_rankings_origin
al.csv", encoding='utf-8-sig') as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ranks=np.asfarray(ranks,float)

print("Original Gender Ranks (#groups = %d)" %len(ranks))
group_fairness(ranks,fo_gender[0],True)

with open("CV Json Research Data/Job 2 - Finance Officer/group_rankings_flippe
d.csv", encoding='utf-8-sig') as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ranks=np.asfarray(ranks,float)

print("Flipped Gender Ranks (#groups = %d)" %len(ranks))
group_fairness(ranks,fo_gender[0],True)

with open("CV Json Research Data/Job 2 - Finance Officer/group_rankings_combin
ed.csv", encoding='utf-8-sig') as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ranks=np.asfarray(ranks,float)

print("Combined Gender Ranks (#groups = %d)" %len(ranks))
group_fairness(ranks,fo_gender[0],True)

7.4.3 Recruitment Officer

Original Gender Ranks (#groups = 2)
Top 3 Male Proportion: 0.3125
Top 3 Female Proportion: 0.1250
Middle 2 Male Proportion: 0.1250
Middle 2 Female Proportion: 0.0625
Bottom 3 Male Proportion: 0.0625
Bottom 3 Female Proportion: 0.3125

Flipped Gender Ranks (#groups = 2)
Top 3 Male Proportion: 0.1875
Top 3 Female Proportion: 0.1875
Middle 2 Male Proportion: 0.1875
Middle 2 Female Proportion: 0.0625
Bottom 3 Male Proportion: 0.1250
Bottom 3 Female Proportion: 0.2500

Combined Gender Ranks (#groups = 4)
Top 3 Male Proportion: 0.2500
Top 3 Female Proportion: 0.1562
Middle 2 Male Proportion: 0.1562
Middle 2 Female Proportion: 0.0625
Bottom 3 Male Proportion: 0.0938
Bottom 3 Female Proportion: 0.2812

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 108/116

In [208]: print("Original Gender Ranks (#participants = %d)" %len(ro_ranks_o))
group_fairness(ro_ranks_o,ro_gender[0],False)

print("Flipped Gender Ranks (#participants = %d)" %len(ro_ranks_f))
group_fairness(ro_ranks_f,ro_gender[0],False)

print("Combined Gender Ranks (#participants = %d)" %len(ro_ranks_c))
group_fairness(ro_ranks_c,ro_gender[0],False)

Original Gender Ranks (#participants = 20)
Top 3 Male Proportion: 0.1625
Top 3 Female Proportion: 0.2125
Middle 2 Male Proportion: 0.1187
Middle 2 Female Proportion: 0.1313
Bottom 3 Male Proportion: 0.2188
Bottom 3 Female Proportion: 0.1562

Flipped Gender Ranks (#participants = 17)
Top 3 Male Proportion: 0.1618
Top 3 Female Proportion: 0.2132
Middle 2 Male Proportion: 0.1618
Middle 2 Female Proportion: 0.0882
Bottom 3 Male Proportion: 0.1765
Bottom 3 Female Proportion: 0.1985

Combined Gender Ranks (#participants = 37)
Top 3 Male Proportion: 0.1622
Top 3 Female Proportion: 0.2128
Middle 2 Male Proportion: 0.1385
Middle 2 Female Proportion: 0.1115
Bottom 3 Male Proportion: 0.1993
Bottom 3 Female Proportion: 0.1757

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 109/116

In [209]: with open("CV Json Research Data/Job 3 - Recruitment Officer/group_rankings_or
iginal.csv", encoding='utf-8-sig') as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ranks=np.asfarray(ranks,float)

print("Original Gender Ranks (#groups = %d)" %len(ranks))
group_fairness(ranks,ro_gender[0],True)

with open("CV Json Research Data/Job 3 - Recruitment Officer/group_rankings_fl
ipped.csv", encoding='utf-8-sig') as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ranks=np.asfarray(ranks,float)

print("Flipped Gender Ranks (#groups = %d)" %len(ranks))
group_fairness(ranks,ro_gender[0],True)

with open("CV Json Research Data/Job 3 - Recruitment Officer/group_rankings_co
mbined.csv", encoding='utf-8-sig') as rankings_file:
 rankings = csv.reader(rankings_file)
 ranks = np.array(list(rankings))
 ranks=np.asfarray(ranks,float)

print("Combined Gender Ranks (#groups = %d)" %len(ranks))
group_fairness(ranks,ro_gender[0],True)

7.5 Permutation Test

Original Gender Ranks (#groups = 2)
Top 3 Male Proportion: 0.1875
Top 3 Female Proportion: 0.1875
Middle 2 Male Proportion: 0.1250
Middle 2 Female Proportion: 0.1250
Bottom 3 Male Proportion: 0.1875
Bottom 3 Female Proportion: 0.1875

Flipped Gender Ranks (#groups = 2)
Top 3 Male Proportion: 0.1875
Top 3 Female Proportion: 0.1875
Middle 2 Male Proportion: 0.1875
Middle 2 Female Proportion: 0.0625
Bottom 3 Male Proportion: 0.1250
Bottom 3 Female Proportion: 0.2500

Combined Gender Ranks (#groups = 4)
Top 3 Male Proportion: 0.1875
Top 3 Female Proportion: 0.1875
Middle 2 Male Proportion: 0.1562
Middle 2 Female Proportion: 0.0938
Bottom 3 Male Proportion: 0.1562
Bottom 3 Female Proportion: 0.2188

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 110/116

The basic idea of the permutation test is to calculate the number of ways you can select your top candidates,
and see how many times a certain number of males and females are selected. This method assumes that each
candidate has the same likelihood of being selected.

In [316]: combs = list(itertools.combinations(['M','M','M','M','F','F','F','F'],3))

total_counter = [0,0,0,0]
for comb in combs:
 male_count = 0

 for resume in comb:
 if resume == 'M':
 male_count += 1

 if male_count == 3:
 total_counter[0] += 1
 elif male_count == 2:
 total_counter[1] += 1
 elif male_count == 1:
 total_counter[2] += 1
 else:
 total_counter[3] += 1

print([x / len(combs) for x in total_counter])

This first section of code calculates the likelihoods of selecting 3 males, 2 males, 1 male and 0 males in your top-
3 candidates. For example, there are only 4 permutations have 3 males in your top-3 out of 56 combinations,
therefore the likelihood is 4/56 = 0.07.

[0.07142857142857142, 0.42857142857142855, 0.42857142857142855, 0.07142857142
857142]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 111/116

In [211]: combs = list(itertools.combinations(['M','M','M','M','F','F','F','F'],4))

total_counter = [0,0,0,0,0]
for comb in combs:
 male_count = 0

 for resume in comb:
 if resume == 'M':
 male_count += 1

 if male_count == 4:
 total_counter[0] += 1
 elif male_count == 3:
 total_counter[1] += 1
 elif male_count == 2:
 total_counter[2] += 1
 elif male_count == 1:
 total_counter[3] += 1
 else:
 total_counter[4] +=1

print([x / len(combs) for x in total_counter])

We then expanded the idea of the permutation test to all of the data points, where we look at the permutations of
the top-3/top-4 permutations. This makes for a good approximation for the p-value of the data but there is a
cavet where is makes the assumption that each datapoint is independent but this is not true because each
panelist is reviewing the same set of resumes.

In [212]: def perm_distri(num_parts,num_top,probs):
 combs = itertools.product(range(num_top+1),repeat=num_parts)
 distri = [0] * (num_parts*num_top+1)
 j = 0

 for i in combs:
 temp_prob = 1
 total = 0
 for j in i:
 temp_prob *= probs[j]
 total += j
 distri[total] += temp_prob

 return distri

[0.014285714285714285, 0.22857142857142856, 0.5142857142857142, 0.22857142857
142856, 0.014285714285714285]

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 112/116

In [213]: def visualise_perm_distri(num_parts,num_top,probs):
 combs = itertools.product(range(num_top+1),repeat=num_parts)
 distri = []
 j = 0

 for i in combs:
 temp_prob = 1
 total = 0
 for j in i:
 total += j
 distri.append(total)

 return distri

7.5.1 Top 3 P-values

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 113/116

In [218]: top3 = perm_distri(9,3, [0.0714, 0.4286, 0.4286, 0.0714])
print('Top 3')
print('Data Analyist')
print('Top Females p-value: %.4f'%top3[12])
print('Top Males p-value: %.4f'%top3[15])
print('Bottom Females p-value: %.4f'%top3[11])
print('Bottom Males p-value: %.4f'%top3[16])
print()
print('Finance Officer')
print('Top Females p-value: %.4f'%top3[11])
print('Top Males p-value: %.4f'%top3[16])
print('Bottom Females p-value: %.4f'%top3[18])
print('Bottom Males p-value: %.4f'%top3[9])
print()
print('Recruitment Officer')
print('Top Females p-value: %.4f'%top3[13])
print('Top Males p-value: %.4f'%top3[14])
print('Bottom Females p-value: %.4f'%top3[14])
print('Bottom Males p-value: %.4f'%top3[13])
print()

Top 3
Data Analyist
Top Females p-value: 0.1438
Top Males p-value: 0.1438
Bottom Females p-value: 0.0954
Bottom Males p-value: 0.0954

Finance Officer
Top Females p-value: 0.0954
Top Males p-value: 0.0954
Bottom Females p-value: 0.0224
Bottom Males p-value: 0.0224

Recruitment Officer
Top Females p-value: 0.1764
Top Males p-value: 0.1764
Bottom Females p-value: 0.1764
Bottom Males p-value: 0.1764

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 114/116

In [219]: plt.hist(visualise_perm_distri(9,3, [0.0714, 0.4286, 0.4286, 0.0714]),bins=28,
density=True)
plt.xlabel('Total Top3 Males')
plt.ylabel('Probability')
plt.title('Permutation of Top3 Males for 9 Participants')

7.5.2 Top 4 P-values

Out[219]: Text(0.5, 1.0, 'Permutation of Top3 Males for 9 Participants')

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 115/116

In [220]: top3 = perm_distri(9,4, [0.0143, 0.2286, 0.5143, 0.2286, 0.0143])
print('Top 4')
print('Data Analyist')
print('Top Females p-value: %.4f'%top3[16])
print('Top Males p-value: %.4f'%top3[20])
print('Bottom Females p-value: %.4f'%top3[20])
print('Bottom Males p-value: %.4f'%top3[16])
print()
print('Finance Officer')
print('Top Females p-value: %.4f'%top3[15])
print('Top Males p-value: %.4f'%top3[21])
print('Bottom Females p-value: %.4f'%top3[21])
print('Bottom Males p-value: %.4f'%top3[15])
print()
print('Recruitment Officer')
print('Top Females p-value: %.4f'%top3[18])
print('Top Males p-value: %.4f'%top3[18])
print('Bottom Females p-value: %.4f'%top3[18])
print('Bottom Males p-value: %.4f'%top3[18])
print()

Top 4
Data Analyist
Top Females p-value: 0.1195
Top Males p-value: 0.1195
Bottom Females p-value: 0.1195
Bottom Males p-value: 0.1195

Finance Officer
Top Females p-value: 0.0737
Top Males p-value: 0.0737
Bottom Females p-value: 0.0737
Bottom Males p-value: 0.0737

Recruitment Officer
Top Females p-value: 0.1756
Top Males p-value: 0.1756
Bottom Females p-value: 0.1756
Bottom Males p-value: 0.1756

9/25/2020 cv-classifier-clean v1.08

file:///C:/Users/aidmc/Downloads/cv-classifier-clean v1.08.html 116/116

In [221]: plt.hist(visualise_perm_distri(9,4, [0.0143, 0.2286, 0.5143, 0.2286, 0.0143]),
bins=36,density=True)
plt.xlabel('Total Top4 Males')
plt.ylabel('Probability')
plt.title('Permutation of Top4 Males for 9 Participants')

References

[1] Ailon, Nir, Moses Charikar, and Alantha Newman. "Aggregating inconsistent information: ranking and
clustering." Journal of the ACM (JACM) 55.5 (2008): 1-27.

Out[221]: Text(0.5, 1.0, 'Permutation of Top4 Males for 9 Participants')

