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This paper addresses theoretical, empirical, and analytical studies pertaining to
human use, misuse, disuse, and abuse of automation technology. Use refers to the
voluntary activation or disengagement of automation by human operators. Trust,
mental workload, and risk can influence automation use, but interactions between
factors and large individual differences make prediction of automation use difficult.
Misuse refers to overreliance on automation, which can result in failures of moni-
toring or decision biases. Factors affecting the monitoring of automation include
workload, automation reliability and consistency, and the saliency of automation
state indicators. Disuse, or the neglect or underutilization of automation, is com-
monly caused by alarms that activate falsely. This often occurs because the base rate
of the condition to be detected is not considered in setting the trade-off between false
alarms and omissions. Automation abuse, or the automation of functions by design-
ers and implementation by managers without due regard for the consequences for
human performance, tends to define the operator’s roles as by-products of the au-
tomation. Automation abuse can also promote misuse and disuse of automation by
human operators. Understanding the factors associated with each of these aspects of
human use of automation can lead to improved system design, effective training
methods, and judicious policies and procedures involving automation use.

INTRODUCTION Technical issues—how automation functions
are implemented and the characteristics of the

The revolution ushered in by the digital com- . .
2 associated sensors, controls, and software—

puter in the latter half of this century has funda-
mentally changed many characteristics of work,
leisure, travel, and other human activities. Even
more radical changes are anticipated in the next
century as computers increase in power, speed,
and “intelligence.” These factors sustain much of
the drive toward automation in the workplace

dominate most writing on automation technol-
ogy. This is not surprising, given the sophistica-
tion and ingenuity of design of many such
systems (e.g., automatic landing of an aircraft).
The economic benefits that automation can pro-
vide, or is perceived to offer, also tend to focus
public attention on the technical capabilities of
automation, which have been amply documented
in such diverse domains as aviation (Spitzer,

] 1987), automobiles (IVHS America, 1992), manu-
ot o i shonld b st ol Pt facturing (Bessani, Levy, Ley, Smith, & Tran-
Washington, DC 20064. field, 1992), medicine (Thompson, 1994), robotics

and elsewhere, as more capable computer hard-
ware and software become available at low cost.
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HUMAN USE OF AUTOMATION

(Sheridan, 1992), and shipping (Grabowski & Wal-
lace, 1993).

Humans work with and are considered essen-
tial to all of these systems. However, in com-
parison with technical capabilities, human capa-
bilities—human performance and cognition in
automated systems—are much less frequently
written about or discussed in public forums. This
stems not from a relative lack of knowledge
(Bainbridge, 1983; Billings, 1991; Chambers &
Nagel, 1985; Hopkin, 1995; Mouloua & Parasura-
man, 1994; Parasuraman & Mouloua, 1996; Ras-
mussen, 1986; Riley, 1995; Sheridan, 1992; Wick-
ens, 1994; Wiener & Curry, 1980; Woods, 1996)
but, rather, from a much greater collective em-
phasis on the technological than on the human
aspects of automation.

In this paper we examine human performance
aspects of the technological revolution known as
automation. We analyze the factors influencing
human use of automation in domains such as
aviation, manufacturing, ground transportation,
and medicine, though our treatment does not fo-
cus on any one of these systems. Consideration of
these factors is important not only to systems
currently under development, such as automa-
tion tools for air traffic management (Erzberger,
1992), but also to far-reaching system concepts
that may be implemented in the future, such as
“free flight” (Planzer & Hoffman, 1995; Radio
and Technical Committee on Aeronautics, 1995).

A prevalent assumption about automation is
that it resides in tvrannical machines that replace
humans, a view made popular by Chaplin in his
movie Modern Times. However, it has become
cvident that automation does not supplant hu-
man activity; rather, it changes the nature of the
work that humans do, often in ways unintended
and unanticipated by the designers of automa-
tion. In modern times, humans are consuniers of
automation. We discuss the human usage pat-
terns of automation in this paper.

First, however, some restrictions of scope
should be noted. We focus on the influence of
automation on individual task performance. We
do not consider in any detail the impact of auto-
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mation on team (Bowers, Oser, Salas, & Cannon-
Bowers, 1996) or job performance (Smith &
Carayon, 1995) or on organizational behavior
(Gerwin & Leung, 1986; Sun & Riis, 1994). We
also do not examine the wider sociological, so-
ciopsychological, or sociopolitical aspects of au-
tomation and human behavior (Sheridan, 1980;
Zuboft, 1988), though such issues are becoming
increasingly important to consider in automation
design (Hancock, 1996; Nickerson, 1995).

What Is Automation?

We define automation as the execution by a
machine agent (usually a computer) of a {function
that was previously carried out by a human.
What is considered automation will therefore
change with time. When the reallocation of a
function from human to machine is complete
and permanent, then the function will tend to be
seen simply as a machine operation, not as auto-
mation. Examples of this include starter motors
for cars and automatic elevators. By the same
token, such devices as automatic teller machines,
cruise controls in cars, and the flight manage-
ment system (FMS) in aircraft qualify as automa-
tion because they perform functions that are also
performed manually by humans. Today’s auto-
mation could well be tomorrow’s machine.

Automation of physical functions has freed hu-
mans from many time-consuming and labor-
intensive activities; however, full automation of
cognitive functions such as decision making,
planning, and creative thinking remains rare.
Could machine displacement of human thinking
become more commonplace in the future? In
principle, this might be possible. For example,
devices such as optical disks are increasingly re-
placing books as repositories of large amounts of
information. Evolutionary neurobiologists have
speculated that external means of storing infor-
mation and knowledge (as opposed to internal
storage in the human brain) not only have played
an important role in the evolution of human con-
sciousness but will also do so in its future devel-
opment (Donald, 1991). Hence permanent alloca-
tion of higher cognitive functions to machines
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need not be conceptually problematic. Moreover,
such a transfer will probably not replace but,
rather, will modify human thinking. In practice,
however, despite more than three decades of re-
search on artificial intelligence, neural networks,
and the development, in Schank’s (1984) terms,
of the “cognitive computer,” enduring transfer
of thinking skills to machines has proven very
difficult.

Automation can be usefully characterized by a
continuum of levels rather than as an all-or-none
concept (McDaniel, 1988; Riley, 1989; Sheridan,
1980). Under full manual control, a particular
function is controlled by the human, with no ma-
chine control. At the other extreme of full auto-
mation, the machine controls all aspects of the
function, including its monitoring, and only its
products (not its internal operations) are visible
to the human operator.

Different levels of automation can be identified
between these extremes. For example, Sheridan
(1980) identified 10 such levels of automation; in
his seventh level, the automation carries out a
function and informs the operator to that effect,
but the operator cannot control the output. Riley
(1989) defined automation levels as the combina-
tion of particular values along two dimensions:
“intelligence” and autonomy. Automation with
high autonomy can carry out functions only with
initiating input from the operator. At the highest
levels, the functions cannot be overridden by the
human operator (e.g., the flight envelope protec-
tion function of the Airbus 320 aircraft).

Human Roles in Automated Systems

Until recently, the primary criteria for applying
automation were technological feasibility and
cost. To the extent that automation could per-
form a function more efficiently, reliably, or ac-
curately than the human operator, or merely re-
place the operator at a lower cost, automation
has been applied at the highest level possible.
Technical capability and low cost are valid rea-
sons for automation if there is no detrimental
impact on human (and hence system) perfor-
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mance in the resulting system. As we discuss
later, however, this is not always the case. In the
ultimate extension of this practice, automation
would completely replace operators in systems.
Automation has occasionally had this effect (e.g.,
in some sectors of the manufacturing industry),
but more generally automation has not com-
pletely displaced human workers. Although in lay
terms it is easiest to think of an automated sys-
tem as not including a human, most such sys-
tems, including “unmanned” systems such as
spacecraft, involve human operators in a super-
visory or monitoring role.

One of the considerations preventing the total
removal of human operators from such systems
has been the common perception that humans
are more flexible, adaptable, and creative than
automation and thus are better able to respond to
changing or unforeseen conditions. In a sense,
then, one might consider the levels of automation
and operator involvement that are permitted in a
system design as reflecting the relative levels of
trust in the designer on one hand and the opera-
tor on the other. Given that no designer of auto-
mation can foresee all possibilities in a complex
environment, one approach is to rely on the hu-
man operator to exercise his or her experience
and judgment in using automation. Usually (but
not always) the operator is given override author-
ity and some discretion regarding the use of
automation.

This approach, however, tends to define the
human operator’s roles and responsibilities in
terms of the automation (Riley, 1995). Designers
tend to automate evervthing that leads to an eco-
nomic benefit and leave the operator to manage
the resulting system. Several important human
factors issues emerge from this approach, includ-
ing consequences of inadequate feedback about
the automation’s actions and intentions (Nor-
man, 1990), awareness and management of au-
tomation modes (Sarter & Woods, 1994), under-
reliance on automation (Sorkin, 1988), and
overreliance on automation (Parasuraman, Mol-
loy, & Singh, 1993; Riley, 1994b). An extensive
list of human factors concerns associated with
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cockpit automation was recently compiled by
Funk, Lyall, and Riley (1995).

Incidents and Accidents

Unfortunately, the ability to address human
performance issues systematically in design and
training has lagged behind the application of au-
tomation, and issues have come to light as a re-
sult of accidents and incidents. The need for bet-
ter feedback about the automation’s state was
revealed in a number of “controlled flight into
terrain” aircraft accidents, in which the crew se-
lected the wrong guidance mode, and indications
presented to the crew appeared similar to when
the system was tracking the glide slope perfectly
(Corwin, Funk, Levitan, & Bloomfield, 1993). The
difficulty of managing complex flight guidance
modes and maintaining awareness of which
mode the aircraft was in was demonstrated by
accidents attributed to pilot confusion regarding
the current mode (Sarter & Woods, 1994). For
example, an Airbus A320 crashed in Strasbourg,
France, when the crew apparently confused the
vertical speed and flight path angle modes (Min-
istere de I'Equipement, des Transports et du
Tourisme, 1993).

Underreliance on automation was demon-
strated in railroad accidents in which crews
chose to neglect speed constraints and their as-
sociated alerts. Even after one such accident near
Baltimore in 1987, inspectors found that the train
operators were continuing to tape over the buzz-
ers that warned them of speed violations (Sorkin,
1988). Finally, overreliance on automation was a
contributing cause in an accident near Colum-
bus, Ohio, in 1994. A pilot who demonstrated low
confidence in his own manual control skills and
tended to rely heavily on the automatic pilot dur-
ing nighttime, low-visibility approaches failed to
monitor the aircraft’s airspeed during final ap-
proach in a nighttime snowstorm and crashed
short of the runway (National Transportation
Safety Board [NTSB], 1994).

Most such accidents result from multiple
causes, and it can be difficult to untangle the
various contributing factors. Whenever automa-
tion is involved in an accident, the issue of how
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the operator used that automation is of interest,
but it may be difficult to say that the operator
used the automation too much, too little, or oth-
erwise inappropriately. Often the best one can do
is to conclude that, the operator having used the
automation in a certain way, certain conse-
quences followed. The lessons learned from these
consequences then join the growing body of les-
sons related to automation design and use. In
most cases the operator is not clearly wrong in
using or not using the automation. Having deter-
mined that the operator must be trusted to apply
experience and judgment in unforeseen circum-
stances, he or she is granted the authority to de-
cide when and how to use it (though manage-
ment may limit this authority to a greater or
lesser extent).

This brings up the question of how operators
make decisions to use automation. How do they
decide whether or not to use automation? Do
they make these decisions rationally or based on
nonrational factors? Are automation usage deci-
sions appropriate given the relative performances
of operator and automation? When and why do
people misuse automation?

Overview

In this paper we examine the factors influenc-
ing the use, misuse, disuse, and abuse of automa-
tion. Two points should be emphasized regarding
our terminology. First, we include in our discus-
sion of human use of automation not only human
operators of systems but also designers, supervi-
sors, managers, and regulators. This necessarily
means that any human error associated with use
of automation can include the human operator,
the designer, or even management error; ex-
amples of each are provided throughout this paper.

Second, in using terms such as misuse, disuse,
and abuse, no pejorative intent is implied toward
any of these groups. We define misuse as overre-
liance on automation (e.g., using it when it
should not be used, failing to monitor it effec-
tively), disuse as underutilization of automation
(e.g., ignoring or turning off automated alarms or
safety systems), and abuse as inappropriate ap-
plication of automation by designers or managers
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(e.g., automation that fails to consider the conse-
quences for human performance in the resulting
system).

USE OF AUTOMATION

The catastrophic accidents in Strasbourg, Bal-
timore, and elsewhere are a powerful reminder
that the decision to use {(or not to use) automa-
tion can be one of the most important decisions a
human operator can make, particularly in time-
critical situations. What factors influence this de-
cision? Several authors (Lee & Moray, 1992,
Muir, 1988) have suggested that automation re-
liability and the operator’s trust in automation
are major factors. Riley (1989) examined several
other factors that might also influence automa-
tion use decisions, including how much workload
the operator was experiencing and how much
risk was involved in the situation. He proposed
that automation usage was a complex, interactive
function of these and other factors. Others (Mc-
Clumpha & James, 1994; Singh, Molloy, & Para-
suraman, 1993a, 1993b) have suggested that op-
erator attitudes toward automation might
influence automation usage. We discuss the im-
pact of each of these factors.

Attitudes Toward Automation

It is easy to think of examples in which auto-
mation usage and attitudes toward automation
are correlated. Often these attitudes are shaped
by the reliability or accuracy of the automation.
For example, automatic braking systems are par-
ticularly helpful when driving on wet or icy
roads, and drivers who use these systems have
favorable attitudes toward them. Smoke detec-
tors are prone to false alarms, however, and are
disliked by many people, some of whom might
disable them. In either case, automation use (or
lack of use) reflects perceived reliability. In other
instances, attitudes may not be so closely linked
to automation reliability. For example, many el-
derly people tend not to use automatic teller ma-
chines because of a generally negative attitude
toward computer technology and a more positive
attitude toward social interaction with other hu-
mans (bank tellers). There are also people who

HUMAN FACTORS

prefer not to use automatic brakes, and some
people like smoke alarms.

Attitudes toward automation vary widely among
individuals (Helmreich, 1984; McClumpha &
James, 1994; Singh, Deaton, & Parasuraman,
1993). Understanding these attitudes—positive
and negative, general and specific—constitutes a
first step toward understanding human use of
automation.

Wiener (1985, 1989) queried pilots of auto-
mated aircraft about their attitudes toward dif-
ferent cockpit systems. A notable finding was that
only a minority of the pilots agreed with the state-
ment, “automation reduces workload.” In fact, a
substantial minority of the pilots thought that au-
tomation had increased their workload. Later
studies revealed that a major source of the in-
creased workload was the requirement to repro-
gram automated systems such as the FMS when
conditions changed (e.g., having to land at a dif-
ferent runway than originally planned). Thus
many pilots felt that automation increased work-
load precisely at the time when it was needed
most—that is, during the high-workload phase of
descent and final approach. Subsequent, more
formal questionnaire studies have also revealed
substantial individual differences in pilot atti-
tudes toward cockpit automation (McClumpha &
James, 1994; Singh et al., 1993a).

Beliefs and attitudes are not necessarily linked
to behaviors that are consistent with those atti-
tudes. To what extent are individual attitudes to-
ward automation consistent with usage patterns
of automation? The issue remains to be explored
fully. In the case of a positive view of automation,
attitudes and usage may be correlated. Examples
include the horizontal situation indicator, which
pilots use for navigation and find extremely help-
ful, and automatic hand-offs between airspace
sectors, which air traffic controllers find useful in
reducing their workload.

More generally, attitudes may not necessarily
be reflected in behavior. Two recent studies
found no relationship between attitudes toward
automation and actual reliance on automation
during multiple-task performance (Riley, 1994a,
1996; Singh et al.,, 1993b). Furthermore, there
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may be differences between general attitudes to-
ward automation (i.e., all automation) and do-
main-specific attitudes (e.g., cockpit automa-
tion). For all these reasons it may be difficult to
predict automation usage patterns on the basis of
questionnaire data alone. Performance data on
actual human operator usage of automation are
needed. We now turn to such evidence.

Mental Workload

One of the fundamental reasons for introduc-
ing automation into complex systems is to lessen
the chance of human error by reducing the op-
erator’s high mental workload. However, this
does not always occur (Edwards, 1977; Wiener,
1988). Nevertheless, one might argue that an op-
erator is more likely to choose to use automation
when his or her workload is high than when it is
low or moderate. Surprisingly, there is little evi-
dence in favor of this assertion. Riley (1994a) had
college students carry out a simple step-tracking
task and a character classification task that could
be automated. He found that manipulating the
difficulty of the tracking task had no impact on
the students’ choice to use automation in the
classification task. The overall level of automa-
tion usage in this group was quite low--less than
about 50%. A possible reason could be that these
young adults typically prefer manual over auto-
mated control, as reflected in their interest in
computer video games that require high levels of
manual skill. However, in a replication study car-
ried out with pilots, who turned on the automa-
tion much more frequently, no relationship be-
tween task difficulty and automation usage was
found.

The difficulty manipulation used by Riley
(1994a) may have been insufficient to raise work-
load significantly, given that task performance
was only slightly affected. Moreover, the partici-
pants had to perform only two simple, discrete-
trial, artificial tasks. Perhaps task difficulty ma-
nipulations affect automation usage only in a
multitask environment with dynamic tasks re-
sembling those found in real work settings. Har-
ris, Hancock, and Arthur (1993) used three flight
tasks—tracking, svstem monitoring, and fuel
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management—and gave participants the option
of automating the tracking task. Following ad-
vance notice of an increase in task difficulty,
there was a trend toward use of automation as a
workload management strategy. However, indi-
vidual variability in automation usage patterns
obscured any significant relationship between
task load increase and automation usage.

The evidence concerning the influence of task
load on automation usage is thus unclear. Nev-
ertheless, human operators often cite excessive
workload as a factor in their choice of automa-
tion. Riley, Lyall, and Wiener (1993) reported
that workload was cited as one of two most im-
portant factors (the other was the urgency of the
situation) in pilots’ choice of such automation as
the autopilot, FMS, and flight director during
simulated flight. However, these data also
showed substantial individual differences. Pilots
were asked how often, in actual line perfor-
mance, various factors influenced their automa-
tion use decisions. For most factors examined,
many pilots indicated that a particular factor
rarely influenced their decision, whereas an al-
most equal number said that the same factor in-
fluenced their decisions quite often; very few
gave an answer in the middle.

Studies of human use of automation typically
find large individual differences. Riley (1994a)
found that the patterns of automation use dif-
fered markedly between those who cited fatigue
as an influence and those who cited other factors.
Moreover, there were substantial differences be-
tween students and pilots, even though the task
domain was artificial and had no relation to avia-
tion. Within both pilot and student groups were
strong differences among individuals in automa-
tion use. These results suggest that different
people employ different strategies when making
automation use decisions and are influenced by
different considerations.

Subjective perceptions and objective measure-
ment of performance are often dissociated (Yeh
& Wickens, 1988). Furthermore, the nature of
workload in real work settings can be fundamen-
tally different from workload in most laboratory
tasks. For example, pilots are often faced with
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deciding whether to fly a clearance (from air traf-
fic control) through the FMS, through simple
heading or altitude changes on the glareshield
panel, or through manual control. Casner (1994)
found that pilots appear to consider the predict-
ability of the flight path and the demands of other
tasks in reaching their decision. When the flight
path is highly predictable, overall workload may
be reduced by accepting the higher short-term
workload associated with programming the
FMS, whereas when the future flight path is more
uncertain, such a workload investment may not
be warranted. To fully explore the implications of
workload on automation use, the workload at-
tributes of particular systems of interest should
be better represented; in the flight deck, this
would include a trade-off between short-term
and long-term workload investments.

Cognitive Overhead

In addition to the workload associated with the
operator’s other tasks, a related form of work-
load—that associated with the decision to use the
automation itself—may also influence automa-
tion use. Automation usage decisions may be
relatively straightforward if the advantages of us-
ing the automation are clear cut. When the ben-
efit offered by automation is not readily appar-
ent, however, or if the benefit becomes clear only
after much thought and evaluation, then the cog-
nitive “overhead” involved may persuade the op-
erator not to use the automation (Kirlik, 1993).

Overhead can be a significant factor even for
routine actions for which the advantages of au-
tomation are clear—for example, entering text
from a sheet of paper into a word processor. One
choice, a labor-intensive one, is to enter the text
manually with a keyboard. Alternatively, a scan-
ner and an optical character recognition (OCR)
program can be used to enter the text into the
word processor. Even though modern OCR pro-
grams are quite accurate for clearly typed text,
most people would probably choose not to use
this form of automation because the time in-
volved in setting up the automation and correct-
ing errors may be perceived as not worth the ef-
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fort. (Only if several sheets of paper had to be
converted would the OCR option be considered.)
Cognitive overhead may be important with
high-level automation that provides the human
operator with a solution to a complex problem.
Because these aids are generally used in uncer-
tain, probabilistic environments, the automated
solution may or may not be better than a manual
one. As a result, the human operator may expend
considerable cognitive resources in generating a
manual solution to the problem, comparing it
with the automated solution, and then picking
one of the solutions. If the operator perceives that
the advantage offered by the automation is not
sufficient to overcome the cognitive overhead in-
volved, then he or she may simply choose not to
use the automation and do the task manually.
Kirlik (1993) provided empirical evidence of
this phenomenon in a dual-task study in which
an autopilot was available to participants for a
primary flight task. He found that none of the
participants used the automation as intended—
that is, as a task-shedding device to allow atten-
tion to be focused on the secondary task when it
was present, but not otherwise. Kirlik (1993) hy-
pothesized that factors such as an individual’s
manual control skills, the time needed to engage
the autopilot, and the cost of delaying the second-
ary task while engaging the autopilot may have
influenced automation use patterns. Using a
Markov modeling analysis to identify the optimal
strategies of automation use given each of these
factors, he found that conditions exist for which
the optimal choice is not to use the automation.

Trust

Trust often determines automation usage. Op-
erators may not use a reliable automated system
if they believe it 1o be untrustworthy. Conversely,
they may continue to rely on automation even
when it malfunctions. Muir (1988) argued that
individuals’ trust for machines can be affected by
the same factors that influence trust between in-
dividuals; for example, people trust others if they
are reliable and honest, but they lose trust when
they are let down or betrayed, and the subsequent
redevelopment of trust takes time. She found that
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use of an automated aid to control a simulated
soft drink manufacturing plant was correlated
with a simple subjective measure of trust in
that aid.

Using a similar process control simulation, Lee
and Moray (1992) also found a correlation be-
tween automation reliance and subjective trust,
although their participants also tended to be bi-
ased toward manual control and showed “inertia”
in their allocation policy. In a subsequent study,
Lee and Moray (1994) found that participants
chose manual control if their confidence in their
own ability to control the plant exceeded their
trust of the automation and that they otherwise
chose automation.

A factor in the development of trust is automa-
tion reliability. Several studies have shown that
operators’ use of automation reflects automation
reliability, though occasional failures of automa-
tion do not seem to be a deterrent to future use of
the automation. Riley (1994a) found that college
students and pilots did not delay turning on au-
tomation after recovery from a failure; in fact,
many participants continued to rely on the auto-
mation during the failure. Parasuraman et al.
(1993) found that even after the simulated cata-
strophic failure of an automated engine-
monitoring system, participants continued to
rely on the automation for some time, though to
a lesser extent than when the automation was
more reliable.

These findings are surprising in view of earlier
studies suggesting that operator trust in automa-
tion is slow to recover following a failure of the
automation (Lee & Moray, 1992). Several pos-
sible mitigating factors could account for the dis-
crepancy.

First, if automation reliability is relatively high,
then operators may come to rely on the automa-
tion, so that occasional failures do not substan-
tially reduce trust in the automation unless the
failures are sustained. A second factor may be the
ease with which automation behaviors and state
indicators can be detected (Molloy & Parasura-
man, 1994). As discussed earlier, the overhead
involved in enabling or disengaging automation
may be another factor. Finally, the overall com-
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plexity of the task may be relevant; complex task
domains may prompt different participants to
adopt different task performance strategies, and
operator use of automation may be influenced by
these task performance strategies as well as by
factors directly related to the automation.

Confidence, Risk, and Other Factors

Several other factors are probably also impor-
tant in influencing the choice to use or not to use
automation. Some of these factors may have a
direct influence, whereas others may interact
with the factors already discussed. For example,
the influence of cognitive overhead may be par-
ticularly evident if the operator’s workload is al-
ready high. Under such circumstances, operators
may be reluctant to use automation even if it is
reliable, accurate, and generally trustworthy. Lee
and Moray (1992) and Riley (1994a) also identi-
fied self-confidence in one’s manual skills as an
important factor in automation usage. If trust in
automation is greater than self-confidence, auto-
mation would be engaged, but not otherwise.

Riley (1994a) suggested that this interaction
could be moderated by other factors, such as the
risk associated with the decision to use or not to
use automation. He outlined a model of automa-
tion usage based on a number of factors (see Fig-
ure 1). The factors for which he found support
include automation reliability, trust in the auto-
mation, self-confidence in one’s own capabilities,
task complexity, risk, learning about automation
states, and fatigue. However, he did not find that
self-confidence was necessarily justified; partici-
pants in his studies were not able to accurately
assess their own performance and use the auto-
mation accordingly, again showing the dissocia-
tion between subjective estimates and perfor-
mance mentioned earlier. Furthermore, large
individual differences were found in almost all
aspects of automation use decisions. This can
make systematic prediction of automation usage
by individuals difficult, much as the prediction
of human error is problematic even when the
factors that give rise to errors are understood
(Reason, 1990).
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Figure 1.

Interactions between factors influencing automation use. Solid arrows rep-

resent relationships supported by experimental data; dotted arrows are hypothesized
relationships or relationships that depend on the system in question. Reproduced from
Parasuraman & Mouloua (1996) with permission from Lawrence Erlbaum Associates.

Practical Implications

These results suggest that automation use de-
cisions are based on a complex interaction of
many factors and are subject to strongly diver-
gent individual considerations. Although many of
the factors have been examined and the most
important identified, predicting the automation
use of an individual based on knowledge of these
factors remains a difficult prospect. Given this
conclusion, in a human-centered automation
philosophy, the decision to use or not to use au-
tomation is left to the operator (within limits set
bv management). Having granted the operator
this discretion, designers and operators should
recognize the essential unpredictability of how
people will use automation in specific circum-
stances, if for no other reason than the presence
of these individual differences.

If automation is to be used appropriately, po-
tential biases and influences on this decision
should be recognized by training personnel, de-
velopers, and managers. Individual operators

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should be made aware of the biases they may
bring to the use of automation. For example, if an
individual is more likely to rely on automation
when tired, he or she should be made aware that
fatigue may lead to overrcliance and be taught to
recognize the implications of that potential bias.
Finally, policies and procedures may profitably
highlight the importance of taking specific con-
siderations into account when deciding whether
or not to use automation, rather than leaving that
decision vulnerable to biases and other factors
that might produce suboptimal strategies.

MISUSE OF AUTOMATION

Most automated systems are reliable and usu-
ally work as advertised. Unfortunately, some may
fail or behave unpredictably. Because such oc-
currences are infrequent, however, people will
come to trust the automation. However, can
there be too much trust? Just as mistrust can lead
to disuse of alerting systems, excessive trust can
lead operators to rely uncritically on automation
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without recognizing its limitations or fail to
monitor the automation’s behavior. Inadequate
monitoring of automated systems has been im-
plicated in several aviation incidents—for in-
stance, the crash of Eastern Flight 401 in the
Florida Everglades. The crew failed to notice the
disengagement of the autopilot and did not moni-
tor their altitude while they were busy diagnosing
a possible problem with the landing gear (NTSB,
1973). Numerous other incidents and accidents
since this crash testify to the potential for human
operators’ overreliance on automation.

Overreliance on Automation

The Air Transport Association (ATA, 1989) and
Federal Aviation Administration (FAA, 1990)
have expressed concern about the potential reluc-
tance of pilots to take over from automated sys-
tems. In a dual-task study, Riley (1994b) found
that although almost all students turned the au-
tomation off when it failed, almost half the pilots
did not, even though performance on the task
was substantially degraded by the failed automa-
tion and the participants were competing for
awards based on performance. Even though the
task had no relation to aviation, pilots showed
significantly more reliance on automation than
did students in all conditions. However, the fact
that almost half the pilots used the automation
when it failed, whereas the rest turned it off, is
further evidence of marked individual differences
in automation use decisions.

Overreliance on automation represents an as-
pect of misuse that can result from several forms
of human error, including decision biases and
failures of monitoring. It is not only untrained
operators who show these tendencies. Will (1991)
found that skilled subject matter experts had mis-
placed faith in the accuracy of diagnostic expert
systems (see also Weick, 1988). The Aviation
Safety Reporting System (ASRS) also contains
many reports from pilots that mention monitor-
ing failures linked to excessive trust in or overre-
liance on automated systems such as the autopi-
lot or FMS (Mosier, Skitka, & Korte, 1994; Singh
et al.,, 1993a, 1993b).
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Decision Biases

Human decision makers exhibit a variety of bi-
ases in reaching decisions under uncertainty
(e.g., underestimating the influence of the base
rate or being overconfident in their decisions).
Many of these biases stem from the use of deci-
sion heuristics (Tversky & Kahneman, 1984) that
people use routinely as a strategy to reduce the
cognitive effort involved in solving a problem
(Wickens, 1992). For example, Tversky and Kah-
neman (1984) showed that even expert decision
makers use the heuristic of representativeness in
making decisions. This can lead to errors when a
particular event or symptom is highly represen-
tative of a particular condition but highly un-
likely for other reasons (e.g., a low base rate).
Although heuristics are a useful alternative to
analytical or normative methods (e.g., utility
theory or Bayesian statistics) and generally lead
to successful decision making, they can result
in biases that lead to substandard decision
performance.

Automated systems that provide decision sup-
port may reinforce the human tendency to use
heuristics and the susceptibility to automation
bias (Mosier & Skitka, 1996). Although reliance
on automation as a heuristic may be an effective
strategy in many cases, overreliance can lead to
errors, as is the case with any decision heuristic.
Automation bias may result in omission errors,
in which the operator fails to notice a problem
or take an action because the automated aid fails
to inform the operator. Such errors include
monitoring failures, which are discussed in more
detail later. Commission errors occur when op-
erators follow an automated directive that is
inappropriate.

Mosier and Skitka (1996) also pointed out that
reliance on the decisions of automation can make
humans less attentive to contradictory sources of
evidence. In a part-task simulation study, Mosier,
Heers, Skitka, and Burdick (1996) reported that
pilots tended to use automated cues as a heuristic
replacement for information seeking. They found
that pilots tended not to use disconfirming evi-
dence available from cockpit displays when there
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was a conflict between expected and actual auto-
mation performance. Automation bias error rates
were also found to be similar for student and pro-
fessional pilot samples, indicating that expertise
does not guarantee immunity from this bias
(Mosier, Skitka, Burdick, & Heers, 1996).

Human Monitoring Errors

Automation bias represents a case of inappro-
priate decision making linked to overreliance on
automation. In addition, operators may not suf-
ficiently monitor the inputs to automated sys-
tems in order to reach effective decisions should
the automation malfunction or fail. It is often
pointed out that humans do not make good
monitors. In fact, human monitoring can be very
efficient. For example, in a high-fidelity simula-
tion study of air traffic control, Hilburn, Jorna,
and Parasuraman (1995) found that compared
with unaided performance, experienced control-
lers using an automated descent advisor were
quicker to respond to secondary malfunctions
(pilots not replying to data-linked clearances).

Monitoring in other environments, such as in-
tensive care units and process control, is also
generally efficient (Parasuraman, Mouloua, Mol-
loy, & Hilburn, 1996). When the number of op-
portunities for failure is considered—virtually ev-
ery minute for these continuous, 24-h systems—
then the relatively low frequency of monitoring
errors is striking. As Reason (1990) pointed out,
the opportunity ratio for skill-based and rule-
based errors is relatively low. The absolute num-
ber of errors may be high, however, and the ap-
plication of increased levels of automation in
these systems creates more opportunities for fail-
ures of monitoring as the number of automated
subsystems, alarms, decision aids, and so on
increase.

McClellan (1994) discussed pilot monitoring
for various types of autopilot failures in aircraft.
FAA certification of an autopilot requires detec-
tion of “hard-over,” uncommanded banks (up to a
maximum of 60°) within 3 s during test flight.
Although such autopilot failures are relatively
easy to detect because they are so salient, “slow-
over” rolls, in which the autopilot rolls the air-
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craft gradually and smoothly, are much less sa-
lient and can go undetected until the aircraft
wings are nearly vertical (e.g., the 1985 China Air-
lines incident; NTSB, 1986). McClellan pointed
out that autopilot failures, though infrequent, do
occur and that incidents and accidents can be
avoided not only by appropriate certification but
also by training:

All autopilot certification theory and testing is
based on the human pilot identifying an autopi-
lot failure and promptly disabling the autopi-
lot. ... It may not always be easy to quickly
identify an actual autopilot failure, because a
malfunction could manifest itself in various
ways. Instead of taking time to troubleshoot an
autopilot failure, [pilots] must treat every unex-
pected maneuver when the autopilot is engaged
as a failure and immediately disable the autopi-
lot and trim system. (P. 80)

Although poor monitoring can have multiple
determinants, operator overreliance on automa-
tion may be an important contributor. Mosier et
al. (1994) found that 77% of ASRS incidents in
which overreliance on automation was suspected
involved a probable failure in monitoring. Simi-
lar incidents have occurred elsewhere. For ex-
ample, a satellite-based navigational system
failed “silently” in a cruise ship that ran aground
off Nantucket Island. The crew did not monitor
other sources of position information that would
have indicated that they had drifted off course
(National Transportation Safety Board, 1997b).

Manual task load. Parasuraman and colleagues
(1993, 1994) have examined the factors influenc-
ing monitoring of automation and found that the
overall task load imposed on the operator, which
determined the operator’s attention strategies, is
an important factor. In their studies, participants
simultaneously performed tracking and fuel
management tasks manually and had to monitor
an automated engine status task. Participants
were required to detect occasional automation
failures by identifying engine malfunctions not
detected by the automation. In the constant reli-
ability condition, automation reliability was in-
variant over time, whereas in the variable
reliability condition, automation reliability var-
ied from low to high every 10 min. Participants
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detected more than 70% of malfunctions on the
engine status task when they performed the task
manually while simultaneously carrying out
tracking and fuel management. However, when
the engine status task was under automation con-
trol, detection of malfunctions was markedly re-
duced in the constant reliability condition.

In a separate experiment, the same conditions
were administered, but participants performed
only the monitoring task without the tracking
and fuel management tasks. Individuals were
now nearly perfect (> 95%) in detecting failures
in the automated control of the engine status
task, which was the only task. These results point
to the potential cost of long-term automation on
system performance and show that operators can
be poor at monitoring automation when they
have to perform other manual tasks simulta-
neously. Other studies have shown that poor au-
tomation monitoring is exhibited by pilots as well
as nonpilots (Parasuraman et al., 1994) and also
when only a single automation failure occurs
during the simulation (Molloy & Parasuraman,
1996).

Automation reliability and consistency. The
monitoring performance of participants in these
studies supports the view that reliable automa-
tion engenders trust (Lee & Moray, 1992). This
leads to a reliance on automation that is asso-
ciated with only occasional monitoring of its
efficiency, suggesting that a critical factor in
the development of this phenomenon might be
the constant, unchanging reliability of the
automation.

Conversely, automation with inconsistent reli-
ability should not induce trust and should there-
fore be monitored more closely. This prediction
was supported by the Parasuraman et al. (1993)
finding that monitoring performance was signifi-
cantly higher in the variable reliability condition
than in the constant reliability condition (see Fig-
ure 2). The absolute level of automation reliabil-
ity may also affect monitoring performance.
May, Molloy, and Parasuraman (1993) found that
the detection rate of automation failures varied
inversely with automation reliability.
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Figure 2. Effects of consistency of automation reliabil-
ity (constant or variable) on monitoring performance
under automation. Based on data from Parasuraman et
al. (1993).

Machine Monitoring

Can the problem of poor human monitoring of
automation itself be mitigated by automation?
Some monitoring tasks can be automated, such
as automated checklists for preflight procedures
(e.g., Palmer & Degani, 1991), though this may
merely create another system that the operator
must monitor. Pattern recognition methods, in-
cluding those based on neural networks, can also
be used for machine detection of abnormal con-
ditions (e.g., Gonzalez & Howington, 1977). Ma-
chine monitoring may be an effective design
strategy in some instances, especially for lower-
level functions, and is used extensively in many
systems, particularly process control.

However, automated monitoring may not pro-
vide a general solution to the monitoring prob-
lem, for at least two reasons. First, automated
monitors can increase the number of alarms,
which is already high in many settings. Second,
to protect against failure of automated monitors,
designers may be tempted to put in another sys-
tem that monitors the automated monitor, a pro-
cess that could lead to infinite regress. These
high-level monitors can fail also, sometimes si-
lently. Automated warning systems can also lead
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to reliance on warning signals as the primary in-
dicator of system malfunctions rather than as
secondary checks (Wiener & Curry, 1980).

Making Automation Behaviors and State
Indicators Salient

The monitoring studies described earlier indi-
cate that automation failures are difficult to de-
tect if the operator’s attention is engaged else-
where. Neither centrally locating the automated
task (Singh, Molloy, & Parasuraman, 1997) nor
superimposing it on the primary manual task
(Duley, Westerman, Molloy, & Parasuraman, in
press) mitigates this effect. These results suggest
that attentional rather than purely visual factors
(e.g., nonfoveal vision) underlie poor monitoring.
Therefore, making automation state indicators
more salient may enhance monitoring.

One possibility is to use display integration to
reduce the attentional demands associated with
detecting a malfunction in an automated task.
Integration of elements within a display is one
method for reducing attentional demands of fault
detection, particularly if the integrated compo-
nents combine to form an emergent feature such
as an object or part of an object (Bennett & Flach,
1992; Woods, Wise, & Hanes, 1981). If the emer-
gent feature is used to index a malfunction, de-
tection of the malfunction could occur preatten-
tively and in parallel with other tasks.

Molloy and Parasuraman (1994, see also Mol-
loy, Deaton, & Parasuraman, 1995) examined
this possibility with a version of an engine status
display that is currently implemented in many
cockpits: a CRT-based depiction of engine instru-
ments and caution and warning messages. The
display consisted of four circular gauges showing
different engine parameters. The integrated form
of this display was based on one developed by
Abbott (1990)—the Engine Monitoring and Crew
Alerting System (EMACS)—in which the four en-
gine parameters were shown as columns on a de-
viation bar graph. Parameter values above or be-
low normal were displayed as deviations from a
horizontal line (the emergent feature) represent-
ing normal operation.
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Pilots and nonpilots were tested with these en-
gine status displays using the same paradigm de-
veloped by Parasuraman et al. (1993). In the
manual condition, participants were responsible
for identifying and correcting engine malfunc-
tions. Performance (detection rate) under
manual conditions was initially equated for the
baseline and EMACS tasks. In the automated
condition, a system routine detected malfunc-
tions without the need for operator intervention;
however, from time to time the automation
routine failed to detect malfunctions, which the
participants were then required to manage. Al-
though participants detected only about a third
of the automation failures with the nonintegrated
baseline display, they detected twice as many fail-
ures with the integrated EMACS display.

Adaptive task allocation may provide another
means of making automation behaviors more sa-
lient by refreshing the operator’s memory of the
automated task (Lewandowsky & Nikolic, 1995;
Parasuraman, Bahri, Deaton, Morrison, & Bar-
nes, 1992). The traditional approach to automa-
tion is based on a policy of allocation of function
in which either the human or the machine has
full control of a task (Fitts, 1951). An alternative
philosophy, variously termed adaptive task allo-
cation or adaptive automation, sees function allo-
cation between humans and machines as flexible
(Hancock & Chignell, 1989; Rouse, 1988; Scerbo,
1996). For example, the operator can actively
control a process during moderate workload, al-
locate this function to an automated subsystem
during peak workload if necessary, and retake
manual control when workload diminishes. This
suggests that one method of improving monitor-
ing of automation might be to insert brief pe-
riods of manual task performance after a long
period of automation and then to return the task
to automation (Byrne & Parasuraman, 1996;
Parasuraman, 1993).

Parasuraman, Mouloua, and Molloy (1996)
tested this idea using the same flight simulation
task developed by Parasuraman et al. (1993).
They found that after a 40-min period of auto-
mation, a 10-min period in which the task was
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reallocated to the operator had a beneficial im-
pact on subsequent operator monitoring under
automation. Similar results were obtained in a
subsequent study in which experienced pilots
served as participants (Parasuraman et al., 1994).
These results encourage further research into
adaptive systems (see Scerbo, 1996, for a com-
prehensive review). However, such systems may
suffer from the same problems as traditional au-
tomation if implemented from a purely technology-
driven approach, without considering user needs
and capabilities (Billings & Woods, 1994).

Display techniques that afford “direct” percep-
tion of system states (Vicente & Rasmussen,
1990) may also improve the saliency of automa-
tion states and provide better feedback about the
automation to the operator, which may in turn
reduce overreliance. Billings (1991) has pointed
out the importance of keeping the human opera-
tor informed about automated systems. This is
clearly desirable, and making automation state
indicators salient would achieve this objective.
However, literal adherence to this principle (e.g.,
providing feedback about e/l automated systems,
from low-level detectors to high-level decision
aids) could lead to an information explosion and
increase workload for the operator. We suggest
that saliency and feedback would be particularly
beneficial for automation that is designed to have
relatively high levels of autonomy.

System Authority and Autonomy

Excessive trust can be a problem in systems
with high-authority automation. The operator
who believes that the automation is 100% reliable
will be unlikely to monitor inputs to the automa-
tion or to second-guess its outputs. In Langer’s
(1989) terms, the human makes a “premature
cognitive commitment,” which affects his or her
subsequent attitude toward the automation. The
autonomy of the automation could be such that
the operator has little opportunity to practice the
skills involved in performing the automated task
manually. If this is the case, then the loss in the
operator’s own skills relative to the performance
of the automation will tend to lead to an even
greater reliance on the automation (see Lee &
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Moray, 1992), creating a vicious circle (Mosier et
al., 1994; Satchell, 1993).

Sarter and Woods (1995) proposed that the
combination of high authority and autonomy of
automation creates multiple “agents,” who must
work together for effective system performance.
Although the electronic copilot (Chambers & Na-
gel, 1985) is still in the conceptual stage for the
cockpit, current cockpit automation possesses
many qualities consistent with autonomous,
agentlike behavior. Unfortunately, because the
properties of the automation can create “strong
but silent” partners to the human operator, mu-
tual understanding between machine and human
agents can be compromised (Sarter, 1996). This
is exemplified by the occurrence of FMS mode
errors in advanced cockpits, in which pilots have
been found to carry out an action appropriate for
one mode of the FMS when, in fact, the FMS was
in another mode (Sarter & Woods, 1994).

Overreliance on automated solutions may also
reduce situation awareness (Endsley, 1996;
Sarter & Woods, 1991; Wickens, 1994). For ex-
ample, advanced decision aids have been pro-
posed that will provide air traffic controllers with
resolution advisories on potential conflicts. Con-
trollers may come to accept the proposed solu-
tions as a matter of routine. This could lead to a
reduced understanding of the traffic picture com-
pared with when the solution is generated manu-
ally (Hopkin, 1995). Whitfield, Ball, and Ord
(1980) reported such a loss of the “mental pic-
ture” in controllers, who tended to use automated
conflict resolutions under conditions of high
workload and time pressure.

Practical Implications

Taken together, these results demonstrate that
overreliance on automation can and does hap-
pen, supporting the concerns expressed by the
ATA (1989) and FAA (1990) in their human fac-
tors plans. System designers should be aware of
the potential for operators to use automation
when they probably should not, to be susceptible
to decision biases caused by overreliance on au-
tomation, to fail to monitor the automation as
closely as they should, and to invest more trust
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in the automation than it may merit. Scenarios
that may lead to overreliance on automation
should be anticipated and methods developed to
counter it.

Some strategies that may help in this regard
include ensuring that state indications are salient
enough to draw operator attention, requiring
some level of active operator involvement in the
process (Billings, 1991), and ensuring that the
other demands on operator attention do not en-
courage the operator to ignore the automated
processes. Other methods that might be em-
ployed to promote better monitoring include the
use of display integration and adaptive task
allocation.

DISUSE OF AUTOMATION

Few technologies gain instant acceptance
when introduced into the workplace. Human op-
erators may at first dislike and even mistrust a
new automated system. As experience is gained
with the new system, automation that is reliable
and accurate will tend to earn the trust of opera-
tors. This has not always been the case with new
technology. Early designs of some automated
alerting systems, such as the Ground Proximity
Warning System (GPWS), were not trusted by pi-
lots because of their propensity for false alarms.
When corporate policy or federal regulation
mandates the use of automation that is not
trusted, operators may resort to “creative disable-
ment” of the device (Satchell, 1993).

Unfortunately, mistrust of alerting systems is
widespread in many work settings because of the
false alarm problem. These systems are set with a
decision threshold or criterion that minimizes
the chance of a missed warning while keeping the
false alarm rate below some low value. Two im-
portant factors that influence the device false
alarm rate and, hence, the operator’s trust in an
automated alerting system are the values of the
decision criterion and the base rate of the haz-
ardous condition.

The initial consideration for setting the deci-
sion threshold of an automated warning system
is the cost of a missed signal versus that of a false
alarm. Missed signals (e.g., total engine failure)
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have a phenomenally high cost, yet their fre-
quency is undoubtedly very low. However, if a
system is designed to minimize misses at all
costs, then frequent device false alarms may
result. A low false alarm rate is necessary for
acceptance of warning systems by human opera-
tors. Accordingly, setting a strict decision cri-
terion to obtain a low false alarm rate would
appear to be good design practice.

However, a very stringent criterion may not
provide sufficient advance warning. In an analy-
sis of automobile collision warning systems, Far-
ber and Paley (1993) suggested that too low a
false alarm rate may also be undesirable because
rear-end collisions occur very infrequently (per-
haps once or twice in the lifetime of a driver). If
the system never emits a false alarm, then the
first time the warning sounds would be just be-
fore a crash. Under these conditions, the driver
might not respond alertly to such an improbable
event. Farber and Paley (1993) speculated that an
ideal system would be one that signals a collision-
possible condition, even though the driver would
probably avoid a crash. Although technically a
false alarm, this type of information might be
construed as a warning aid in allowing improved
response to an alarm in a collision-likely situa-
tion. Thus all false alarms need not necessarily be
harmful. This idea is similar to the concept of a
“likelihood-alarm,” in which more than the usual
two alarm states are used to indicate several pos-
sible levels of the dangerous condition, ranging
from very unlikely to verv certain (Sorkin, Kan-
towitz, & Kantowitz, 1988).

Setting the decision criterion for a low false
alarm rate is insufficient by itself for ensuring
high alarm reliability. Despite the best intentions
of designers, the availability of the most ad-
vanced sensor technology, and the development
of sensitive detection algorithms, one fact may
conspire to limit the effectiveness of alarms: the
low a priori probability or base rate of most haz-
ardous events. If the base rate is low, as it often is
for many real events, then the posterior probabil-
ity of a true alarm—the probability that given an
alarm, a hazardous condition exists—can be low
even for sensitive warning systems.
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Parasuraman, Hancock, and Olofinboba
(1997) carried out a Bayesian analysis to examine
the dependence of the posterior probability on
the base rate for a system with a given detection
sensitivity (d"). Figure 3 shows a family of curves
representing the different posterior probabilities
of a true alarm when the decision criterion (B) is
varied for a warning system with fixed sensitivity
(in this example, d' = 4.7). For example, B can be
set so that this warning system misses only 1 of
every 1000 hazardous events (hit rate = .999)
while having a false alarm rate of .0594.

Despite the high hit rate and relatively low false
alarm rate, the posterior odds of a true alarm
with such a system could be very low. For ex-
ample, when the a priori probability (base rate)
of a hazardous condition is low (say, .001), only 1
in 59 alarms that the system emits represents a
true hazardous condition (posterior probability =
.0168). It is not surprising, then, that many hu-
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man operators tend to ignore and turn off
alarms—they have cried wolf once too often (Sor-
kin, 1988). As Figure 3 indicates, reliably high
posterior alarm probabilities are guaranteed for
only certain combinations of the decision crite-
rion and the base rate.

Even if operators do attend to an alarm, they
may be slow to respond when the posterior prob-
ability is low. Getty, Swets, Pickett, and Goun-
thier (1995) tested participants’ response to a
visual alert while they performed a tracking task.
Participants became progressively slower to re-
spond as the posterior probability of a true alarm
was reduced from .75 to .25. A case of a prison
escape in which the escapee deliberately set off a
motion detector alarm, knowing that the guards
would be slow to respond, provides a real-life ex-
ample of this phenomenon (Casey, 1993).

These results indicate that designers of auto-
mated alerting systems must take into account

Posterior Probability P(SIR)

0.0 - f +

0.00 0.02 0.04
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A Priori Probability (p)

Base Rate
Figure 3. Posterior probability (P[SIR]) of a hazardous condition S given an alarm
response R for an automated warning system with fixed sensitivity d’ = 4.7, plotted as
a function of a priori probability (base rate) of S. From Parasuraman, Hancock, and
Olofinboba (1997). Reprinted with permission of Taylor & Francis.
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not only the decision threshold at which these
systems are set (Kuchar & Hansman, 1995;
Swets, 1992) but also the a priori probabilities of
the condition to be detected (Parasuraman, Han-
cock, et al., 1997). Only then will operators tend
to trust and use the system. In many warning
systems, designers accept a somewhat high false
alarm rate if it ensures a high hit rate. The reason
for this is that the costs of a miss can be ex-
tremely high, whereas the costs of a false alarm
are thought to be much lower.

For example, if a collision avoidance system’s
decision criterion is set high enough to avoid a
large number of false alarms, it may also miss a
real event and allow two airplanes to collide.
Having set the criterion low enough to ensure
that very few real events are missed, the de-
signers must accept a higher expected level of
false alarms. Normally this is thought to incur a
very low cost (e.g., merely the cost of executing
an unnecessary avoidance maneuver), but the
consequences of frequent false alarms and con-
sequential loss of trust in the system are often
not included in this trade-off.

Practical Implications

The costs of operator disuse because of mis-
trust of automation can be substantial. Operator
disabling or ignoring of alerting systems has
played a role in several accidents. In the Conrail
accident near Baltimore in 1987, investigators
found that the alerting buzzer in the train cab
had been taped over. Subsequent investigation
showed similar disabling of alerting systems in
other cabs, even after prior notification of an in-
spection was given.

Interestingly, following another recent train
accident involving Amtrak and Marc trains near
Washington, D.C., there were calls for fitting
trains with automated braking systems. This
solution seeks to compensate for the possibility
that train operators ignore alarms by overriding
the operator and bringing a train that is in viola-
tion of a speed limit to a halt. This is one of the
few instances in which a conscious design deci-
sion is made to allow automation to override
the human operator, and it reflects, as was sug-
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gested earlier, an explicit expression of the rela-
tive levels of trust between the human operator
and automation. In most cases, this trade-off is
decided in favor of the operator; in this case,
however, it has been made in favor of automation
specifically because the operator has been judged
untrustworthy.

Designers of alerting systems must take into
account both the decision threshold and the base
rate of the hazardous condition in order for op-
erators to trust and use these systems. The costs
of unreliable automation may be hidden. If high
false alarm rates cause operators not to use a
system and disuse results in an accident, system
designers or managers determine that the opera-
tor was at fault and implement automation to
compensate for the operator’s failures. The op-
erator may not trust the automation and could
attempt to defeat it; the designer or manager does
not trust the operator and puts automation in a
position of greater authority. This cycle of opera-
tor distrust of automation and designer or man-
ager distrust of the operator may lead to abuse of
automation.

ABUSE OF AUTOMATION

Automation abuse is the automation of func-
tions by designers and implementation by man-
agers without due regard for the consequences
for human (and hence system) performance and
the operator’s authority over the system. The de-
sign and application of automation, whether in
aviation or in other domains, has typically been
technology centered. Automation is applied
where it provides an economic benefit by per-
forming a task more accurately or more reliably
than the human operator or by replacing the op-
erator at a lower cost. As mentioned previously,
technical and economic factors are valid reasons
for automation, but only if human performance
in the resulting system is not adversely affected.

When automation is applied for reasons of
safety, it is often because a particular incident or
accident identifies cases in which human error
was seen to be a major contributing factor. De-
signers attempt to remove the source of error by
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automating functions carried out by the human
operator. The design questions revolve around
the hardware and software capabilities required
to achieve machine control of the function. Less
attention is paid to how the human operator will
use the automation in the new system or how
operator tasks will change. As Riley (1995)
pointed out, when considering how automation
is used rather than designed, one moves away
from the normal sphere of influence (and inter-
est) of system designers.

Nevertheless, understanding how automation
is used may help developers produce better auto-
mation. After all, designers do make presump-
tions about operator use of automation. The
implicit assumption is that automation will
reduce operator errors. For example, automated
“solutions” have been proposed for many errors
that automobile drivers make: automated navi-
gation systems for route-finding errors, colli-
sion avoidance systems for braking too late be-
hind a stopped vehicle, and alertness indicators
for drowsy drivers. The critical human factors
questions regarding how drivers would use such
automated systems have not been examined
(Hancock & Parasuraman, 1992; Hancock, Para-
suraman, & Byrne, 1996).

Several things are wrong with this approach.
First, one cannot remove human error from the
system simply by removing the human operator.
Indeed, one might think of automation as a
means of substituting the designer for the opera-
tor. To the extent that a system is made less vul-
nerable to operator error through the introduc-
tion of automation, it is made more vulnerable to
designer error. As an example of this, consider
the functions that depend on the weight-on-
wheels sensors on some modern aircraft. The pi-
lot is not able to deploy devices to stop the air-
plane on the runway after landing unless the
system senses that the gear are on the ground;
this prevents the pilot from inadvertently deploy-
ing the spoilers to defeat lift or operate the thrust
reversers while still in the air. These protections
are put in place because of a lack of trust in the
pilot to not do something unreasonable and po-
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tentially catastrophic. If the weight-on-wheels
sensor fails, however, the pilot is prevented from
deploying these devices precisely when they are
needed. This represents an error of the designer,
and it has resulted in at least one serious incident
(Poset, 1992) and accident (Main Commission
Aircraft Accident Investigation, 1994).

Second, certain management practices or cor-
porate policies may prevent human operators
from using automation effectively, particularly
under emergency conditions. The weight-on-
wheels sensor case represents an example of the
human operator not being able to use automa-
tion because of prior decisions made by the de-
signer of automation. Alternatively, even though
automation may be designed to be engaged flex-
ibly, management may not authorize its use in
certain conditions. This appears to have been the
case in a recent accident involving a local transit
train in Gaithersburg, Maryland. The train col-
lided with a standing train in a heavy snowstorm
when the automatic speed control system failed
to slow the train sufficiently when approaching
the station because of snow on the tracks. It was
determined that the management decision to
refuse the train operator’s request to run the train
manually because of poor weather was a major
factor in the accident (National Transportation
Safety Board, 1997a). Thus automation can also
act as a surrogate for the manager, just as it can
for the system designer.

Third, the technology-centered approach may
place the operator in a role for which humans are
not well suited. Indiscriminate application of au-
tomation, without regard to the resulting roles
and responsibilities of the operator, has led to
many of the current complaints about automa-
tion: for example, that it raises workload when
workload is already high and that it is difficult to
monitor and manage. In many cases, it has re-
duced operators to system monitors, a condition
that can lead to overreliance, as demonstrated
earlier.

Billings (1991) recognized the danger of defin-
ing the operator’s role as a consequence of the
application of automation. His human-centered
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approach calls for the operator to be given an
active role in system operation, regardless of
whether automation might be able to perform the
function in question better than the operator.
This recommendation reflects the idea that the
overall system may benefit more by having an
operator who is aware of the environmental con-
ditions the system is responding to and the status
of the process being performed, by virtue of ac-
tive involvement in the process, than by having
an operator who may not be capable of recogniz-
ing problems and intervening effectively, even if
it means that system performance may not be as
good as it might be under entirely automatic con-
trol. Underlying this recognition is the under-
standing that only human operators can be
granted fiduciary responsibility for system safety,
so the human operator should be at the heart
of the system, with full authority over all its
functions.

Fourth, when automation is granted a high
level of authority over system functions, the op-
erator requires a proportionately high level of
feedback so that he or she can effectively monitor
the states, behaviors, and intentions of the auto-
mation and intervene if necessary. The more re-
moved the operator is from the process, the more
this feedback must compensate for this lack of
involvement; it must overcome the operator’s
complacency and demand attention, and it must
overcome the operator’s potential lack of aware-
ness once that attention is gained. The impor-
tance of feedback has been overlooked in some
highly automated systems (Norman, 1990).
When feedback has to compensate for the lack of
direct operator involvement in the system, it
takes on an additional degree of importance.

In general, abuse of automation can lead to
problems with costs that can reduce or even nul-
lify the economic or other benefits that automa-
tion can provide. Moreover, automation abuse
can lead to misuse and disuse of automation by
operators. If this results in managers’ implement-
ing additional high-level automation, further dis-
use or misuse by operators may follow, and so
on, in a vicious circle.
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CONCLUSIONS: DESIGNING FOR
AUTOMATION USAGE

Our survey of the factors associated with the
use, misuse, disuse, and abuse of automation
points to several practical implications for de-
signing for more effective automation usage.
Throughout this paper we have suggested many
strategies for designing, training for, and manag-
ing automation based on these considerations.
These strategies can be summarized as follows.

Automation Use

1. Better operator knowledge of how the auto-
mation works results in more appropriate use of
automation. Knowledge of the automation de-
sign philosophy may also encourage more appro-
priate use.

2. Although the influences of many factors af-
fecting automation use are known, large indi-
vidual differences make systematic prediction of
automation use by specific operators difficult.
For this reason, policies and procedures should
highlight the importance of taking specific con-
siderations into account when deciding whether
or not to use automation, rather than leaving that
decision vulnerable to biases and other factors
that may result in suboptimal strategies.

3. Operators should be taught to make rational
automation use decisions.

4. Automation should not be difficult or time
consuming to turn on or off. Requiring a high
level of cognitive overhead in managing automa-
tion defeats its potential workload benefits,
makes its use less attractive to the operator, and
makes it a more likely source of operator error.

Automation Misuse

1. System designers, regulators, and operators
should recognize that overreliance happens and
should understand its antecedent conditions and
consequences. Factors that may lead to overreli-
ance should be countered. For example, work-
load should not be such that the operator fails
to monitor automation effectively. Individual
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operators who demonstrate a bias toward over-
reliance because of specific factors should be
taught to recognize these biases and compensate
for them. Overreliance on automation may also
signal a low level of self-confidence in the opera-
tor's own manual control skills, suggesting that
further training or evaluation of the operator’s
suitability for the job is needed.

2. Operators use automation cues as heuristics
for making decisions. Although the use of heuris-
tics is usually effective, occasionally it may lead
to error because of decision biases. Training is
required to recognize and counter decision biases
that may lead to overreliance on automation.

3. Although it is often pointed out that human
monitoring is subject to errors, in many instances
operational monitoring can be efficient. Human
monitoring tends to be poor in work environ-
ments that do not conform to well-established
ergonomics design principles, in high-workload
situations, and in systems in which the automa-
tion is highly autonomous and there is little op-
portunity for manual experience with the auto-
mated tasks.

4. Feedback about the automation’s states, ac-
tions, and intentions must be provided, and it
must be salient enough to draw operator atten-
tion when he or she is complacent and informa-
tive enough to enable the operator to intervene
effectively.

Automation Disuse

1. The impact of automation failures, such as
false alarm rates, on subsequent operator reli-
ance on the automation should be considered as
part of the process of setting automation perfor-
mance requirements, otherwise, operators may
grow to mistrust the automation and stop using
it. When the operator makes an error, system de-
signers and managers may grow to mistrust the
operator and look to automation as the ultimate
authority in the system.

2. Designers of aulomated alerting systems
must take into account not only the decision
threshold at which these systems are set but also
the base rate of the hazardous condition to be
detected.
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3. Designers of automated alerting systems
should consider using alarms that indicate when
a dangerous situation is possible (“likelihood”
alarms), rather than encouraging the operator to
rely on the alarm as the final authority on the
existence of a dangerous condition.

Automation Abuse

1. The operator’s role should be defined based
on the operator’s responsibilities and capabili-
ties, rather than as a by-product of how the au-
tomation is implemented.

2. The decision to apply automation to a func-
tion should take into account the need for active
operator involvement in the process, even if such
involvement reduces system performance from
what might be achieved with a fully automated
solution; keeping the operator involved provides
substantial safety benefits by keeping the opera-
tor informed and able to intervene.

3. Automation simply replaces the operator
with the designer. To the extent that a system is
made less vulnerable to operator error through
the application of automation, it is made more
vulnerable to designer error. The potential for
and costs of designer error must be considered
when making this trade-off.

4. Automation can also act as a surrogate for
the manager. If the designer applied a specific
automation philosophy to the design of the sys-
tem, that philosophy should be provided to the
manager so that operational practices are not im-
posed that are incompatible with the design. In
addition, just as system designers must be made
aware of automation-related issues, so must
those who dictate how it will be used.

Finally, two themes merit special emphasis.
First, many of the problems of automation mis-
use, disuse, and abuse arise from differing expec-
tations among the designers, managers, and op-
erators of automated systems. Qur purpose is not
to assign blame to designers, managers, or opera-
tors but to point out that the complexities of the
operational environment and individual human
operators may cause automation to be used in
ways different from how designers and managers
intend. Discovering the root causes of these
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differences is a necessary step toward informing
the expectations of designers and managers so
that operators are provided with automation that
better meets their needs and are given the author-
ity and decision-making tools required to use the
automation to its best effect.

Second, individual differences in automation
use are ubiquitous. Human use of automation is
complex, subject to a wide range of influences,
and capable of exhibiting a wide range of pat-
terns and characteristics. That very complexity
makes the study of automation a large undertak-
ing, but the growing importance of automation in
systems makes such study increasingly impera-
tive. Better understanding of why automation is
used, misused, disused, and abused will help fu-
ture designers, managers, and operators of sys-
tems avoid many of the errors that have plagued
those of the past and present. Application of this
knowledge can lead to improved systems, the de-
velopment of effective training curricula, and the
formulation of judicious policies and procedures
involving automation use.
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